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Abstract:  
We extend the important idea of range-based volatility estimation to the multivariate case. In 
particular, we propose a range-based covariance estimator that is motivated by financial 
economic considerations (the absence of arbitrage), in addition to statistical considerations. 
We show that, unlike other univariate and multivariate volatility estimators, the range-based 
estimator is highly efficient yet robust to market microstructure noise arising from bid-ask 
bounce and asynchronous trading. Finally, we provide an empirical example illustrating the 
value of the high-frequency sample path information contained in the range-based estimates 
in a multivariate GARCH framework. 
 
 
Keywords: Range-based estimation, volatility, covariance, correlation, absence of arbitrage, 
exchange rates, stock returns, bond returns, bid-ask bounce, asynchronous trading 
 
 



     1 The relevant  literature includes Garman and Klass (1980), Parkinson (1980), Beckers (1983), Ball
and Torous (1984), Rogers and Satchell (1991), Kunitomo (1992), and Yang and Zhang (2000). 
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1.  Introduction

The price range, defined as the difference between the highest and lowest log asset prices over a fixed

sampling interval (for concreteness, we focus on a one-day interval), has a long, colorful and

distinguished history of use as a volatility estimator.1  As emphasized most recently by Alizadeh, Brandt

and Diebold (2002), the range has many attractive properties.  First, it is a highly efficient volatility

proxy.  The intuition is simple.  The range is a potent distillation of the valuable information about

volatility contained in the entire intraday price path, whereas alternative volatility proxies based on the

daily return, such as the daily squared return, use only the opening and closing prices.  Hence, for

example, on days when the security price fluctuates substantially throughout the day but, by chance, the

closing price is close to the opening price, the daily squared return indicates low volatility despite the

large intraday price fluctuation.  The daily range, in contrast, reflects the intraday price fluctuations and

therefore indicates correctly that the volatility is high.

Second, the range appears robust to common forms of market microstructure noise, such as bid-

ask bounce.  Again, the intuition is simple.  In the presence of bid-ask bounce, the observed daily

maximum is likely to be at the ask and hence too high by half the spread, whereas the observed minimum

is likely to be at the bid and hence too low by half the spread.  On average, then, bid-ask bounce inflates

the range by the average spread, which is small in liquid markets.

Finally, data on the range, which is also a popular indicator in technical analysis (e.g., Edwards

and Magee, 1997), are widely available for exchange-traded futures contracts (including currencies,

Treasury bond, and stock indices) and individual stocks, not only presently but also, in many cases, over

long historical time spans.  In fact, the range has been reported for many years in major business

newspapers through so-called “candlestick plots,” showing the daily high, low, and close.

Despite these appealing properties of the range, one cannot help but notice a large gap in the

range-based volatility estimation literature:  it is entirely univariate.  That is, although range-based

variance estimation has been extensively discussed and refined, range-based covariance estimation

remains uncharted territory.  The reason is that it is not at all obvious how to construct an appropriate

range-based covariance estimator.  Intuitively plausible candidates such as the maximal daily divergence

between two log prices, , make sense only when the covariance is known to beRange[lnp
1
& lnp

2
]

positive, and moreover, they cannot be computed without the underlying high-frequency data because



     2 See, for example, the review in Andersen, Bollerslev and Diebold (2002).
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.  Hence the range would seem to join the ranks of otherRange[lnp
1
& lnp

2
] … Range[lnp

1
]&Range[lnp

2
]

famously obvious and intuitive univariate statistics that have no similarly obvious or intuitive multivariate

generalization, such as the median.

The apparent failure of range-based volatility estimation to generalize to the multivariate case is

particularly unfortunate, because financial economics is intimately concerned with multivariate

interactions.  Consider, for example, three pillars of modern finance:  asset pricing, asset allocation, and

risk management.  An asset’s price is determined by its systematic risk, which is related to its covariance

with the market or other risk factors.  Similarly, optimal portfolio shares depend on the variances and

covariances of  asset returns, as does portfolio value at risk.

In this paper, we propose a simple and intuitive multivariate range-based volatility estimator.  Our

approach relies in an appealing way on financial economic considerations, in addition to statistical

considerations; in particular, we invoke the absence of arbitrage opportunities.  We proceed as follows. 

In Section 2, we begin by discussing salient aspects of univariate range-based volatility estimation, which

sets the stage for the multivariate discussion to which we then turn.  In particular, we show how no-

arbitrage conditions can be used to express covariances in terms of variances, which may of course be

estimated by standard range-based methods, in foreign exchange, fixed income, and equity contexts.  We

also conjecture that the appealing properties of univariate range-based volatility (reasonably high if not

theoretically maximal efficiency, combined with robustness to market microstructure noise) documented

by Alizadeh, Brandt and Diebold (2002) carry over to the multivariate case.

We confirm this conjecture in Section 3, in which we provide a Monte Carlo investigation of the 

properties of the range-based volatility and covariance estimators, and we compare them to those of

realized volatilities and covariances, which have received substantial attention recently.2  We first

establish the absolute and relative performance of the two approaches in an ideal situation with no

microstructure noise, after which we consider separately the effects of bid-ask bounce and asynchronous

trading on the estimators.  Our Monte Carlo results demonstrate that, although the range-based estimates

are less efficient than the realized estimates under the abstract conditions ideal for the realized estimates,

they are nevertheless quite efficient, and they are much less biased than naively-constructed realized



     3 By “naively-constructed,” we refer to realized estimates constructed without regard for mitigating the
effects of microstructure noise.  Much of the applied realized volatility literature, of course, does attempt
to control for microstructure noise in a variety of ways.  Work such as Andersen, Bollerslev, Diebold and
Labys (2001b), for example, attempts to insure against microstructure effects by focusing only on the
deepest, most liquid markets and by working with an underlying sampling frequency much less high then
the maximum obtainable.  More recent work such as Zumbach, Corsi and Trapletti (2002), moreover,
develops formal methods for reducing the effects of microstructure noise either by smoothing the ultra-
high-frequency data before constructing realized volatilities, or by smoothing the naive realized
volatilities constructed from the raw ultra-high-frequency data.
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estimates in the presence of realistic market microstructure contamination of the data.3  The balance

struck by the range-based volatility and covariance estimators makes them potentially attractive for

applied work.

In section 4, we then provide an empirical example that illustrates the value of the high-frequency

sample path information contained in the range-based volatility and covariance estimates in a standard

multivariate GARCH framework.  In particular, we construct range-based estimates of the covariance

matrix of Deutsche mark/U.S. dollar and Japanese Yen/U.S. dollar futures exchange rate returns.  To

evaluate the information content in the range-based variance and covariance estimates, relative to daily

squared returns and return cross-products, we include the lagged range-based estimates as volatility

predictors in an otherwise-standard multivariate GARCH model.  We find that the range-based estimates

drive out the lagged squared returns and return cross-products.  Besides attesting to the fact that the

range-based estimates are highly informative, the empirical example demonstrates how easy it is to

incorporate range-based volatility estimation in standard empirical work.

Finally, we conclude and discuss directions for future research in Section 5.

2.  Theoretical Framework

2.1. The Univariate Case

Before considering the estimation of multivariate covariances and correlations, we set the stage by

considering the estimation of univariate variances.  Consider a univariate stochastic volatility diffusion

for the log of an asset price p
t
 with instantaneous volatility σ

t
.  Suppose we sample this process discretely

at m regular times throughout the day, which lasts from time t to t+1, to obtain the intraday returns 

, for .  Under general conditions given in Andersen, Bollerslev,r
(m), t%k/m

'p
t%k/m

&p
t%(k&1)/m

k'1,...,m

Diebold and Labys (2001a, 2001b) and Andersen, Bollerslev and Diebold (2002), the variance of these

discrete-time returns over the one-day interval conditional on the sample path  is:{σ
t%τ

}
1

τ'0
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σ̄
2

t ' m
1

0

σ
2

t%τ dτ. (1)

σ̄
2

t (m)'jk'1,...,m
r
2

(m), t%k/m, (2)

The integrated volatility  thus provides a canonical and natural measure of return volatility, and itσ̄
t

features prominently in the financial economics literature (e.g., Hull and White, 1987).  Because the

integrated volatility is inherently unobservable, several estimators have been proposed, including

estimators based on the intraday returns, daily returns, and the daily range.  Let us consider them in turn.

The most intuitive volatility estimator is the realized volatility, which is simply the square-root of

the sum of the intraday squared returns, used for example in Merton (1980), French, Schwert and

Stambaugh (1987), Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold

and Labys (2001a, 2001b).  The daily realized volatility converges, in the sampling frequency m, to the

daily integrated volatility; that is, if we define the daily realized variance estimator as:

then, under regularity conditions, .  Hence, one can approximate, at least in principle,plim
m64

σ̄
2

t (m)'σ̄
2

t

the daily integrated variance arbitrarily well by summing sufficiently finely sampled intraday squared

returns.

An extreme, yet very popular, version of the realized volatility is the daily squared return, which

is simply the daily realized variance with the intraday sampling frequency m set to one.  Although the

squared return is still an unbiased estimator of the integrated variance, it is contaminated by substantial

measurement error due to the fact that it only incorporates the opening and closing prices.  To gain

intuition for the source of this measurement error, consider a day when the security price fluctuates

substantially throughout the day but, by chance, the closing price is close to the opening price.  On such a

day, the squared return indicates low volatility despite the large intraday price fluctuation, and the

measurement error contained in the squared return as an estimator of the integrated variance is of the

same magnitude as the integrated variance itself.  As a way to quantify the average magnitude of the

measurement errors, Andersen and Bollerslev (1998) simulate a stochastic volatility model with

empirically realistic parameters and compare the day-to-day fluctuation of the integrated variance to the

day-to-day fluctuation of the squared daily return.  They find that the variance of the measurement error

in squared daily returns is more than twenty times the variance of the true underlying integrated variance. 

As a result of this overwhelming amount of measurement error, squared returns are typically smoothed, as
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γ ' 0.361 Range
2

t. (3)

in GARCH models, to help reduce the measurement error.

Now consider Parkinson’s (1980) range-based estimator of the daily integrated variance: 

Ideally,  (i.e., the max and min are taken over the dailyRange
t
' max[{lnp

t%τ
}
1

τ'0]&min[{lnp
t%τ

}
1

τ'0]

sample path) but in practice the range can only be computed for a discretely sampled price process

.  Like the daily squared return, the daily range-Range
t
(m) ' max[{lnp

t%k/m
}
k'1,...,m

]&min[{lnp
t%k/m

}
k'1,...,m

]

based volatility estimator evaluated at the true range is unbiased for integrated volatility, but, importantly,

range-based volatility is much less contaminated by measurement error.  For example, in the example we

gave above to illustrate the source of the measurement error in the daily squared returns, the range

accurately reflects the intraday price fluctuations and therefore indicates correctly that the volatility is

high.  Furthermore, Anderson and Bollerslev’s (1998) simulation study reveals that, if the daily squared

return is as efficient as realized volatility computed using a sampling rate of once a day (which is true by

definition), then range-based volatility is approximately as efficient as realized volatility computed using

a sampling rate of roughly ten times per day.

Although the range is highly efficient relative to the daily squared return, it is nevertheless less

efficient than realized volatility.  In particular, realized volatility computed with a sufficiently high

sampling rate theoretically dominates all other estimators because it becomes free of measurement error

as m64.  Against the theoretical superiority of realized volatility under ideal conditions – “Merton’s

utopia” in the colorful language of Bai, Russell and Tiao (2000) – one must balance a number of real-

world complications that may cause difficulty for naively-constructed realized volatilities, but not for

range-based volatilities.  First, the sampling rate m can not literally be taken to infinity as required for the

superiority of realized volatility because the sampling frequency is ultimately constrained by transactions

time, which is discrete.  Second, the ultra-high frequency data required for theoretically ultra-efficient

realized volatilities is often unavailable at present, and certainly unavailable historically, whereas the

daily range is broadly disseminated and is often available historically.  Finally, as shown by Alizadeh,

Brandt and Diebold (2002), naively-constructed realized volatilities can be severely biased due to bid-ask

bounce, whereas range-based volatilities are robust to this form of market microstructure noise.  The

intuition is that in the presence of a bid-ask spread the observed price is a noisy version of the true price

because it equals the true price plus or minus half the spread, depending on whether a trade is buyer- or

seller-initiated.  Because transactions tend to bounce between buys and sells, the average size of the



     4 Moreover, one could readily perform a bias correction by subtraction the average spread from the
range.  We thank Joel Hasbrouck for this observation.

     5 See Andersen, Bollerslev, Diebold and Labys (2001a, 2001b) and Andersen, Bollerslev and Diebold
(2002).
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σ̄
2

ij,t ' m
1

0

σ
2

ij,t%τdτ (4)

σ̄
2

ij,t(m) ' jk'1,...,m
r
i,(m),t%k/m

×r
j,(m),t%k/m

. (5)

squared intraday returns is increased.  By summing the squared intraday returns, each of which is biased

upward, the realized volatility contains a cumulated and therefore potentially large bias, which becomes

more severe as returns are sampled more frequently.  The range, in contrast, is less likely to be seriously

contaminated by bid-ask bounce.  The highest observed price is likely to be at the ask and hence too high

by half the spread, whereas the lowest observed price is likely to be at the bid and hence too low by half

the spread.  On average, the range is inflated only by the average spread, which is small in liquid

markets.4

In summary, range-based volatilities achieve a potentially attractive compromise:  they are

convenient to use (both from a data collection and computational perspective), they perform well under

theoretical conditions ideal for realized volatility (in particular, they are much more efficient than daily

squared returns), and they may perform better than realized volatilities in the presence of real-world

complications due to market microstructure.

2.2. The Multivariate Case

We can now consider the multivariate case, which, as we stressed in the introduction, is of crucial

importance for finance.  Let  denote the ij-th element of the multivariate diffusion matrix .  Then, theσ
2

ij Σ

ij-th daily integrated covariance:

can be consistently estimated by the daily realized covariance:

In precise parallel to the univariate case, we have, under regularity conditions, .5 plim
m64

σ̄
2

ij,t(m) ' σ̄
2

ij,t

Hence, one can approximate, at least in principle, the daily integrated covariance arbitrarily well by

summing sufficiently finely sampled intraday return cross products.

The attractive blend of convenience, efficiency and robustness achieved by the range-based
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∆ln A/B ' ∆ln A/$ & ∆ln B/$. (6)

Var[∆ln A/B] ' Var[∆ln A/$] % Var[∆ln B/$] & 2 Cov[∆ln A/$,∆ln B/$], (7)

Cov[∆ln A/$,∆ln B/$] '
1

2
Var[∆ln A/$] % Var[∆ln B/$] & Var[∆ln A/B] . (8)

ˆCov[∆ln A/$,∆ln B/$] '
1

2
V̂ar[∆ln A/$] % V̂ar[∆ln B/$] & V̂ar[∆ln A/B] , (9)

Σ̂ '
V̂ar[∆ln A/$] ˆCov[∆ln A/$,∆ln B/$]

ˆCov[∆ln A/$,∆ln B/$] V̂ar[∆ln B/$]
.  (10)

volatility estimator in the univariate case makes one eager for extension to the multivariate case.  We now

proceed to do so.  The basic idea is very simple, and the implementation varies slightly depending on

whether the application is to foreign exchange, bonds or stocks.  We consider each in turn.

2.2.1. Foreign Exchange

In foreign exchange markets, absence of triangular arbitrage implies a deterministic relationship between

any pair of dollar rates and the corresponding cross rate.  Consider two dollar exchange rates, denoted A/$

and B/$.  Then, in the absence of triangular arbitrage, the cross-rate is  and hence theA/B'(A/$)/(B/$)

continuously compounded A/B return is:

Taking variances yields:

or

This suggests a natural range-based return covariance estimator:

where  is Parkinson’s (1980) range-based return variance estimator.  We then assemble theV̂ar[∆ @]

estimated variance-covariance matrix as:

In higher dimensional cases, we proceed in precisely analogous fashion, estimating the variances using

Parkinson’s method and estimating each pairwise covariance as above, and then assembling the results

into an estimated covariance matrix.

2.2.2. Fixed Income
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Var[r
f
(T
1
,T
2
)] ' Var[r(T

2
)] % Var[r(T

1
)] & 2Cov[r(T

1
),r(T

2
)], (11)

Cov[r(T
1
),r(T

2
)] '

1

2
Var[r(T

2
)] % Var[r(T

1
)] & Var[r

f
(T
1
,T
2
)] . (12)

ˆCov[r(T
1
,r(T

2
)] '

1

2
V̂ar[r(T

2
)] % V̂ar[r(T

1
)] & V̂ar[r

f
(T
1
,T
2
)] (13)

Σ̂ '

V̂ar[r(T
1
)]) ˆCov[r(T

1
),r(T

2
)]

ˆCov[r(T
1
),r(T

2
)] V̂ar[r(T

2
)]

. (14)

Var[r
p
] ' λ2Var[r

1
] % (1&λ)2Var[r

2
] % 2λ(1&λ)Cov[r

1
,r
2
], (15)

Cov[r
1
,r
2
] '

1

2λ(1&λ)
Var[r

p
]&λ2Var[r

1
]&(1&λ)2Var[r

2
] . (16)

In fixed income markets, the absence of arbitrage implies a deterministic relationship among any two

zero-coupon bond prices and the corresponding forward contract.  Specifically, consider two bonds with

maturities T
1
 and T

2
 and prices P(T

1
) and P(T

2
), with T

1 
<T

2
.  The price of a forward contract between

times T
1
 and T

2
  is then  Taking logs,  first differences,F(T

1
,T
2
) ' P(T

2
) / P(T

1
). f(T

1
,T
2
) ' p(T

2
) & p(T

1
),

and finally variances yields:r
f
(T
1
,T
2
)'r(T

2
)&r(T

1
),

or

Hence we form the covariance estimator:

and assemble the estimated variance-covariance matrix precisely as in the foreign exchange case:

Extension to higher-dimensional cases is straightforward.

2.2.3. Equities

The return on a two-equity portfolio with shares  and , denoted , has a variance of:λ 1&λ r
p
'λr

1
%(1&λ)r

2

so that:

This suggests the covariance estimator: 



     6 For example, Datastream provides as much as 40 years of historical data on the daily high, low, and
closing prices of 37 British pound denominated currencies and of 14 Swiss franc denominated currencies. 
The International Monetary Market (IMM), a subsidy of the Chicago Mercantile Exchange (CME),
recently introduced futures and options contracts on Euro/British pound, Euro/Swiss franc, and
Euro/Japanese yen cross rates.  Finally, the New York Board of Trade (NYBOT) offers futures contracts
on 14 cross-currencies, including seven Euro denominated contracts.
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ˆCov[r
1
,r
2
] '

1

2λ(1&λ)
V̂ar[r

p
]&λ2V̂ar[r

1
]&(1&λ)2V̂ar[r

2
]

(17)

Σ̂ '

V̂ar[r
1
] ˆCov[r

1
,r
2
]

ˆCov[r
1
,r
2
] V̂ar[r

2
]

. (18)

and the corresponding covariance matrix estimator:

Extension to higher-dimensional cases is again straightforward.  Note also that this method of estimating

the covariance via the range of the two-asset portfolio return is generally applicable to any two assets –

not just equities – so long as data on the portfolio return range is available.

2.2.4. Discussion

Our no-arbitrage approach to range-based covariance estimation is widely applicable in the foreign

exchange context because daily ranges of all legs of many currency triangles are available.6  In the fixed

income context, it is applicable to select maturities for which liquid bonds are aligned with liquid forward

or futures contracts, such as the three- and six-month Treasury bills and the three-month Treasury bill

futures or the five- and ten-year Treasury notes and the five-year Treasury note futures.  In the equity

context, however, the direct applicability of our approach is limited by the fact that historical data on the

range of two-asset portfolios are typically not available (notable exceptions are the TSE 100, TSE 200,

and TSE 300 indices of the Toronto stock exchange and the ASX 100, ASX 200, and ASX 300 indices of

the Australian stock exchange).  It is worth noting, however, that the increasing availability of high-

frequency return data makes feasible the direct calculation of the two-asset portfolio return range. 

Although one can in this case bypass the range and immediately calculate realized variances and

covariances, the robustness of the range to market microstructure noise, illustrated in Alizadeh, Brandt

and Diebold (2002) and in the next section of this paper, makes the range an attractive volatility proxy as

well.



     7 Moreover, even in the absence of microstructure noise, bias may creep in.  First, nonlinear
transformations, such as conversion from covariances to correlations, obviously inject bias.  Second, the
Parkinson estimator assumes continuous sampling of an underlying diffusion, whereas in practice
sampling is necessarily discrete because it can be made no finer than transaction-by-transaction.  This
introduces a downward bias in the Parkinson volatility estimator because the observed range is only a
lower bound for the true range.  Rogers and Satchell (1991) propose a bias correction, but the bias is
negligible for range-based estimators constructed using ranges based on the very high – even if not
infinite – frequency sampling relevant in practice.  Hence we do not pursue bias corrections in this paper.

     8 Other ways to guarantee positive definiteness include the shrinkage approach of Ledoit and Wolf
(2001) or the perturbation methods of Gill, Murray and Wright (1981) or Schnabel and Eskow (1999).
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We conjecture that just as market microstructure noise may corrupt realized variances but not

range-based variances, so too may it corrupt naively-constructed realized covariances but not range-based

covariances.  In particular, it is natural to suspect that asynchronous trading biases realized covariances

because the estimator requires identical timing of the pairs of returns used to form the cross-products. 

Range-based covariances, in contrast, avoid this problem by taking an indirect route based on the absence

of arbitrage.  We provide a detailed assessment of this conjecture in the next section.

Thus far we have said little about the theoretical properties of the range-based covariance

estimator.  One obvious point is that the estimator is unbiased under the same conditions that deliver

unbiasedness of Parkinson’s (1980) variance estimator because it is a linear combination of  variances. 

But any such claim under ideal conditions is likely invalid in the presence of market microstructure noise,

which is a crucial aspect of financial market reality.7  Hence we will not dwell on theoretical properties

likely to be irrelevant in practice.

A similarly obvious and related point is that  is in general not guaranteed to be positive definite,Σ̂

and moreover, even if conditions could be established under which positive semi-definiteness is

guaranteed in principle, it would not be guaranteed in practice because any feasible estimator is based on

data that is contaminated by market microstructure noise.  We impose positive definiteness by estimating

the Cholesky factor P of , rather than  itself, where P is a unique lower-triangular matrix defined byΣ Σ

.  Note that the elements of P are functions of the elements of .  Hence we insert our range-basedΣ'PP ) Σ

estimators of the relevant variances and covariances into P (computed analytically) to obtain an estimator

of the Cholesky factor  and then form the estimator of the covariance matrix.  Because theP̂ P̂P̂
)

estimated Cholesky factor  will be complex when  is not positive definite, we define  as theP̂ Σ̂ P̂
)

conjugate transpose, which guarantees that  is real.8P̂P̂
)

Ultimately, then, the interesting questions for financial economists center not on the theoretical



     9 Since  and  follow the same stochastic process, we analyze only the volatility estimates for .p
1

p
2

p
1
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p
i,t%k/m

'p
i,t%(k&1)/m

%σ 250/mε
i,t%k/m

, for i'{1,2}, and p
3,t
'p

1,t
&p

2,t
, (19)

properties of range-based covariance and correlation estimates under abstract conditions surely violated in

practice, but rather on their performance in realistic situations involving small samples, discrete sampling,

and market microstructure noise.  As we argued above, we have reason to suspect good performance of

the range-based approach, both because of its high efficiency due to the use of the information in the

intraday sample path, and because of its robustness to microstructure noise.  We now turn to a Monte

Carlo analysis designed to illuminate precisely those issues.

3.  Monte Carlo Exploration

3.1. Ideal Conditions

We initially ignore market microstructure issues.  We assume that two dollar-denominated exchange rates

 and  evolve as driftless diffusions with annualized volatilities σ of 15 percent, a covariance of 0.9,P
1

P
2

and hence a correlation ρ of 0.4.  We further assume that at each instant the cross-rate  is determinedP
3

by the absence of triangular arbitrage as the ratio of the two dollar rates.  Starting at , weP
1,0
' P

2,0
' 1

simulate 24 hours worth of  regularly spaced intraday log price observations using:m

where ,  are standard normal innovations with correlation ρ, and there are 250 trading daysp
i
' lnP

i
[ε
1
, ε
2
]

per year.  We consider sampling frequencies m ranging from m=4 (one observation every six hours) to

m=1440 (one observation every minute) and use the resulting data to compute the daily range and

intraday returns.  We then construct three estimates of the volatilities, covariance, and correlation of the

two dollar rates.  Specifically, we construct range-based covariance matrix estimates using Parkinson’s

variance estimator (3) and equation (9), and, for comparison, we compute the realized covariance matrix

using two different approaches.  First, in parallel fashion to the range-based estimator,  we use the three

realized variances to construct an estimate of the covariance.  Second, we compute the realized covariance

directly using the cross-products of intraday returns, as in equation (5).  We repeat this procedure 10,000

times and report the means, standard deviations, and root mean squared errors of the resulting sampling

distributions in Table 1.

The results for the volatilities are familiar from Alizadeh, Brandt, and Diebold (2002).9  The

range-based estimates are downward biased because the range of the discretely sampled process is strictly

less than the range of the underlying diffusion, as discussed earlier.  The magnitude of the bias decreases
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as the sampling frequency increases.  But, even in the limit as , the range is still only a noisym64

volatility proxy, which means that the standard deviation and RMSE of the range-based volatility

estimator settle down to non-zero values.  The realized volatility behaves quite differently because it

converges not only in expectation but also in realization to the true volatility.  The more frequently the

underlying diffusion is sampled, the more precise the realized volatility gets, until, in the limit, the

standard deviation and RMSE of the estimator are zero.  Consistent with the results of Andersen and

Bollerslev (1998), sampling the diffusion every three to six hours leads to a realized volatility estimator

that is comparable to the limit of the range-based estimator.

The results for the range-based covariance estimates follow from the properties of the range-

based volatility estimates.  The estimator  involvesCov[∆p
1
,∆p

2
]'1/2(Var[∆p

1
]%Var[∆p

2
]&Var[∆p

3
])

three volatility estimates, each of which is downward biased by an amount that depends on the level of

volatility (the higher the volatility the more likely that the true extremes are far from the observed

extremes).  Because the variance of  is less than the variance of  and  due to the positivep
3

p
1

p
2

covariance, the covariance estimates are also downward biased because the downward bias of

 dominates the upward bias of .  As with the volatility estimates, the biasVar[∆p
1
]%Var[∆p

2
] &Var[∆p

3
]

vanishes as we increase the sampling frequency, and the standard deviation and RMSE stabilize.  The

realized covariances, computed either through the no-arbitrage condition or with return cross-products,

yield identical estimates that inherit the outstanding properties of the realized volatility estimates.

Finally, the range-based correlation is downward biased, although, by construction, the

covariance in the numerator is less down-ward biased than the product of volatilities in the denominator

(the correlation evaluated at the average covariance and volatilities with  is 0.4336).  The sourcem'1440

of this bias is the sampling variation of the covariance and volatility estimates through Jensen’s

inequality.  Because the sampling variation does not vanish as , the range-based correlationm64

estimator remains downward biased even in the limit.  The realized correlation does not suffer from this

bias because of the convergences of the realized covariance and volatilities.

3.2. Bid-Ask Bounce

Bid-ask bounce is a well-known reality of financial market data.  To examine its effect on the covariance

and correlation estimates, we augment the Monte Carlo experiment with a simple model of bid-ask

bounce and price discreteness taken from Hasbrouck (1999b).  Specifically, we take the dollar rates from

the original experiment as the true prices and compute the bid and ask quotes

 and , where  andB
i,t
' floor[P

i,t
&1/2spread, tick] A

i,t
'ceiling[P

i,t
%1/2spread, tick] floor[x,tick]
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 are functions that round  down or up to the nearest tick, respectively.  For the cross rate,ceiling[x,tick] x

we compute the bid and ask quotes by imposing no-arbitrage given the bid and ask quotes of the dollar

rates.  We then take the observed prices as , where .  ToP
obs

i,t 'q
i,t

B
i,t
%(1&q

i,t
)A

i,t
q
i,t

~Bernoulli[1/2]

capture the fact that the two base currencies are denominated in dollars, which means that the sale or

purchase of the dollar might involve a simultaneous purchase or sale of the two currencies, we allow the

buy-sell indicators  and  to be correlated with .  The indicator  is independent.q
1,t

q
2,t

Corr[q
1,t

,q
2,t

]'η q
3,t

Table 2 presents the results for a bid-ask spread of 0.0005 and a tick size of 0.0001, which are

realistic values for currencies (see Hasbrouck, 1999b).  In Panel A the correlation η is set to zero and in

Panels B and C the correlation is 0.5 and 0.75, respectively.  The effect of bid-ask bounce on the range-

based estimates is relatively minor.  In contrast, the effect on the realized volatilities, covariance, and

correlation is striking.  Consistent with the intuition outlined above, the realized volatilities are upward

biased when the data is sampled more frequently than once every three hours.  By the time the data is

sampled every minute, the bias inflates the true volatility by almost 100 percent (an average estimate of

29.7 percent as opposed to a true volatility of 15 percent).  The results for the realized covariance depend

on whether we construct the estimator using the no-arbitrage condition or return cross-products and on the

correlation of the bid-ask indicators.  If we use the no-arbitrage condition, the realized covariance inherits

the biases of the realized volatilities, to the point where for five-minute sampling the average estimate is

negative.  In contrast, if we use return cross-products and if the bid-ask indicators are independent (in

Panel A), the realized covariance is unbiased.  The reason is that if the bid-ask indicators are independent,

then the expectation of the product of observed returns is equal to the expectation of the product of true

returns.  The bid-ask bounce therefore only increases the variability of the estimator.  However, if the bid-

ask indicators are correlated (in Panels B and C), this argument no longer holds and the realized

covariance is severely positively biased because each cross-product of returns contains an upward bias

due to the common component of the bid-ask indicators.  Finally, the realized correlation, computed from

the biased realized volatilities and biased covariance, is unreliable, ranging from -0.89 to 0.66.

3.3. Asynchronous Trading

Asynchronous trading is another market microstructure effect that is likely to affect differently the range-

based and realized covariance and correlation estimates.  With infrequent trading, a security has a latent

true price that is only revealed when a trade occurs.  Between trades, the observed price is stale at the last

traded price and therefore does not reflect the true price.  In a univariate setting, infrequent trading

induces positive serial-correlation in the intraday returns, which, in turn, causes a downward bias in the

realized volatility.  In a bivariate setting, asynchronous infrequent trading, when the trades for the two
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assets do not take place at the same time, also creates a misalignment of the return-cross products that

may lead to a downward bias of the realized covariance.  

To capture the effect of asynchronous infrequent trading in our Monte Carlo experiment, we use

the discretization (19) with  (one observation per second) to simulate the latent “true” pricem'17280

processes.  We then assign for each process  trade times randomly throughout the day and constructn

stale price processes for which the price is equal to the price at the previous trade time until it is reset to

the latent true price at the next trade time.  Hence the true prices look like continuous diffusions while the

stale prices look like discrete steps that occur at different times for the different currencies.  Finally, we

sample these stale price processes at a regular frequency  ranging again from four to 1440 and proceedm

just as in Section 3.1 (i.e., there is no bid-ask bounce in this experiment).

We present the results for  (an average of one trade every five minutes) and  (ann'288 n'1440

average of one trade every minute) in panels A and B of Table 3.  The range-based estimates are slightly

downward biased because the infrequent trading magnifies the discretization bias.  The realized

volatilities are slightly downward biased due to the positive serial correlation induced by infrequent

trading.  Finally, when we compute the realized covariance and correlation using the no-arbitrage

condition, the estimates inherit only the slight bias from infrequent trading, but when we instead use

return cross-products, the estimates are severely downward biased.  For example, with one-minute

sampling the average realized covariance and correlation computed with return cross-products are close to

zero in both panels.  This extreme bias is due to the asynchronous price revelation. 

3.4. Summary

The results in Table 1 confirm the theoretical fact that under conditions ideal for realized volatility

estimation, all other estimators, including estimators based on the range, are suboptimal.  However, range-

based estimation is not much inferior.  The range-based volatilities, covariances and correlations are about

as efficient as their realized counterparts obtained by sampling the intraday price process four to six times

per day, which is impressive given the simplicity  (both from a data collection and computational

perspective) of range-based estimation. 

More importantly, however, tables 2 and 3 illustrates clearly that this theoretical ranking is

reversed in situations of practical relevance involving realistic market microstructure noise.  In the

presence of either bid-ask bounce or asynchronous trading, both of which are realities of financial

markets data, realized volatilities, covariances and correlations may become biased.  The range-based

estimates, in contrast, appear robust to these forms of market microstructure noise.
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4. Empirical Example

We now use the range-based estimation approach to explore the joint volatility dynamics of the U.S.

dollar prices of the Deutsche mark (recently replaced by the Euro) and Japanese yen.  The mark (Euro)

and yen are the two most actively traded dollar denominated currencies and their joint volatility dynamics

obviously play a crucial role in international portfolio allocation and risk management.   

4.1 Data and Unsmoothed Range-Based Estimates

We use daily high, low, and closing (3pm EST) prices of the Deutsche mark and Japanese yen currency

futures contracts traded on the International Monetary Market (IMM), a subsidiary of the Chicago

Mercantile Exchange (CME), from January 3, 1990 through December 30, 1998 (2,189 observations).  A

currency futures contract represents delivery of the currency on the second Wednesday of the following

March, June, September, or December.  Each day there are at least three futures contracts with different

quarterly delivery dates traded on each currency.  We use prices of the front-month contract, the contract

closest to delivery and with at least ten days to delivery, which is typically the most actively traded.  

Although futures on the Euro/yen cross-rate are now actively traded at the IMM and New York

Board of Trade (NYBT), historical data on the mark/yen cross-rate is only available for the spot market. 

We prefer working with futures, as opposed to spot, exchange rates for several reasons.  First, all futures

prices (including the daily high and low) result from open outcry, so that all transactions are open to the

market and orders are filled at the best price.  Currency spot market trading, in contrast, is based on

bilateral negotiation between banks, and any particular executed price is not necessarily representative of

overall market conditions.  Second, the closing, or “settlement,” futures price is based on the best

sentiment of the market at the time of close (3pm EST, after which spot market trading declines) and is

widely scrutinized, because it is used for marking to market all account balances.  Therefore, the futures

closing price is likely to be a very accurate measure of the “true” market price at that time.  Finally,

futures returns are the actual returns from investing in a foreign currency, whereas spot “returns” are less

meaningful unless one accounts for the interest rate differential between the two countries. 

We therefore construct artificial historical data on the cross-rate futures using transactions data on

the two dollar rate futures.  In particular, for each day in the sample, we use the futures transactions to

obtain a minute-by-minute price series for the dollar rates, linearly interpolating between transactions

when necessary, and then impose no triangular arbitrage to obtain a minute-by-minute price series for the

cross-rate.  Finally, we take the implied daily high and low cross-rates to compute the cross-rate range.  
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The first two plots in Figure 1 present the Parkinson estimates of the mark and yen return

volatility.  The third plot shows the range-based estimates of the return correlation, obtained using the

range-based variance estimates and equation (9).

4.2. Smoothed Range-Based Estimates

Although the range-based volatilities are much less contaminated by measurement error than daily

squared returns, Figure 1 reveals that they are nevertheless quite noisy.  It is possible, therefore, that the

measurement error in range-based volatilities and correlations can be beneficially reduced by smoothing,

just as, for example,  the much more noisy squared returns are smoothed by GARCH models.  This

suggests an intriguing possibility.  By including lagged range-based estimates in an otherwise-standard

GARCH model, we can potentially attain the best of both worlds:  use of the range incorporates valuable

intraday price path information, and use of the smoothing implicit in the GARCH framework reduces the

measurement error.  In fact, it is natural to conjecture that the inclusion of the lagged range-based

estimates will reduce, or even eliminate, the need for inclusion of the much more noisy lagged squared

returns.  The truth of this conjecture is an empirical matter, to which we now turn.

Consider the following bivariate diagonal GARCH(1,1) model for the daily log returns:

and the volatility dynamics:

where  is the mark/dollar return,  is the yen/dollar return, , , and  are the range-based mark∆p
1

∆p
2

x
1

x
2

x
12

and yen return volatilities and covariance, and the return innovations are conditionally Gaussian.

The model is entirely standard, with one twist:  we allow for the appearance of the lagged range-

based variances and covariance estimates in the variances and covariance equations.  The standard

bivariate diagonal GARCH(1,1) model corresponds to   In column A of Table 4, we reportδ
1
'δ

2
'δ

3
'0.

estimates of the model that impose this constraint.  The estimates display a familiar pattern:  the β



     10 The p-value is 0.03, suggesting some ambiguity.  Note that one would not necessarily expect the
model including only range-based estimates completely to dominate the model including both range-
based estimates and the traditional squared returns and cross products:  although the daily range certainly
contains information not in the daily return, the daily return also contains information that may not be in
the range (the opening and closing prices). 
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estimates are large, the  estimates are smaller, all are highly statistically significant, and in each equationα

the sum of the  and  estimates is close to, but less than, unity.α β

We now augment the GARCH(1,1) model with the range-based variances and covariance,

included as additional predetermined variables to supplement the lagged squared returns and return cross-

products.  The results, which we report in column B of Table 4, are striking.  All three  estimates areα

now negligible, and two of three are statistically insignificant.  The  estimates, moreover, are smaller, toβ

make room for the  estimates, which are larger than the  coefficients from model A and highlyδ α

statistically significant.  The upshot is clear:  the inclusion of the lagged range-based variances and

covariance drives out the lagged squared returns and return cross products, because the former are much

more informative about the lagged volatilities than the later.

To understand the role of the range-based estimates in the GARCH framework, and the reason

why their inclusion drives out the lagged squared returns and return cross-product, interpret equation (21)

as a standard AR process for the variances and covariance.  The innovations to the variances and

covariance at date t are proxied for by the lagged squared returns and return cross-products, with the

intuition that when these proxies are large (small), the variances and covariance are likely to have

experienced a positive (negative) innovation.  Unfortunately, as we explained above, the squared return is

a very noisy measure of the variance, suggesting that a substantial part of the volatility variation

generated by the GARCH model is driven by proxy noise as opposed to true information about volatility. 

The range-based estimates, in contrast, are less noisy and therefore serve as better proxies for the

variances and covariance innovations.

Finally, in light of the results for model B, we report in column C of Table 4 estimates of a

bivariate diagonal GARCH model in which we drop the lagged squared returns and return cross products,

and instead include only lagged range-based variances and covariances.  That is, we impose the restriction

 on model B.  The maximized values of the log likelihoods indicate that the restriction canα
1
'α

2
'α

3
'0

not be rejected at the one percent level; hence, once lagged range-based estimates are included, there

appears to be little need to retain lagged squared returns and cross products.10  In sharp contrast, the

likelihood values indicate that the standard GARCH model A is overwhelmingly rejected in favor of a
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model that includes range-based estimates, whether with or without the traditional squared returns and

cross product (models B and C, respectively).  In Figure 2, we plot the much smoother estimated

volatilities and correlation from our hybrid “range-based GARCH model (C),” which arguably does

deliver the best of both worlds.

5.  Summary and Concluding Remarks

We have extended the important idea of range-based volatility estimation to the multivariate case.  In

particular, we proposed a range-based covariance estimator motivated by financial economic

considerations (the absence of arbitrage), in addition to statistical considerations.  We showed that, unlike

other univariate and multivariate volatility estimators, the range-based estimator is highly efficient yet

robust to market microstructure noise arising from bid-ask bounce and asynchronous trading.  Finally, we

provided an empirical example illustrating the value of the high-frequency sample path information

contained in the range-based estimates in a  multivariate GARCH framework.

Many extensions and applications of the ideas developed here are possible; see, for example,

Brunetti and Lildolt (2002), who take up several.  One intriguing application, which to the best of our

knowledge has not yet been explored, involves constructing range-based volatility and covariance bets via

portfolios of lookback options.  The payoff of a lookback straddle (a lookback call plus a lookback put) is

equal to the range of the underlying asset over the life of the option.  Therefore, lookback straddles are

ideal for placing bets on the volatility of an asset, their payoffs are high (low) when volatility was high

(low).  Our no-arbitrage approach to covariance estimation suggests an analogous way of placing bets on

the covariance between two assets.  For example, consider a portfolio of a long mark/dollar lookback

straddle, a long yen/dollar lookback straddle, and short mark/yen lookback straddle.  Given equation (9)

and the fact that each of the straddles is a variance bet, the payoffs of this portfolio are high (low) when

covariance between the two dollar rates is high (low) over the life of the option. 
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Table 1

 Range-Based and Realized Estimates in Merton’s Utopia

Two dollar denominated exchange rates  and  evolve as drift-less diffusions with annualizedP
1

P
2

volatility σ of 15 percent, covariance of 0.9, and correlation ρ of 0.4.  At each instant the cross-currency

 is given by the absence of triangular arbitrage as the ratio of the two base currencies.  Starting atP
3

, we simulate 24 hours worth of  regularly spaced intraday log prices usingP
1,0
'P

2,0
'1 m

, , and , for k=1,...m, where  and p
i,t%k/m

'p
i,t%(k&1)/m

%σ 250/mε
i,t%k/m
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p
i
' lnP

i
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, ε
2
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are standard-normal innovations with correlation ρ.  The sampling frequency m ranges from four (one

observation every six hours) to 1440 (on observation every minute). 

We use this simulated data to compute the daily range and intraday returns and then construct

three estimates of the volatilities, covariance, and correlation.  We construct range-based covariance

estimates using Parkinson’s variance estimator and . Cov[∆p
1
,∆p

2
]'1/2(Var[∆p

1
]%Var[∆p

2
]&Var[∆p

3
])

We construct realized covariance estimates using either the realized variance estimator and the same

expression for the covariance or using the cross-products of intraday returns.  We repeat this procedure

10,000 times and report the means, standard deviations, and root mean squared errors.
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Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.099 4.279 4.373 0.862 1.084 1.085 0.371 0.341 0.342
2.5-min 13.891 4.278 4.420 0.839 1.071 1.072 0.370 0.347 0.348
5-min 13.746 4.277 4.457 0.823 1.061 1.064 0.369 0.351 0.352
10-min 13.477 4.274 4.537 0.794 1.043 1.048 0.368 0.359 0.360
20-min 13.090 4.266 4.674 0.753 1.016 1.026 0.366 0.370 0.372
40-min 12.525 4.255 4.923 0.695 0.977 0.998 0.363 0.389 0.391
1hr 20-min 11.701 4.236 5.369 0.615 0.918 0.961 0.358 0.420 0.422
3-hr 10.212 4.177 6.354 0.484 0.808 0.909 0.350 0.485 0.487
6-hr 8.207 4.089 7.929 0.335 0.659 0.868 0.330 0.607 0.611

Realized Estimates with No-Arbitrage Condition
1-min 14.997 0.280 0.280 0.900 0.064 0.064 0.400 0.022 0.022
2.5-min 14.992 0.482 0.482 0.900 0.111 0.111 0.400 0.038 0.038
5-min 14.985 0.623 0.624 0.900 0.143 0.143 0.400 0.050 0.050
10-min 14.971 0.883 0.883 0.901 0.202 0.202 0.399 0.070 0.070
20-min 14.943 1.249 1.250 0.900 0.285 0.285 0.398 0.099 0.099
40-min 14.888 1.758 1.762 0.898 0.404 0.404 0.395 0.142 0.142
1hr 20-min 14.788 2.475 2.484 0.896 0.570 0.570 0.389 0.203 0.203
3-hr 14.531 3.684 3.713 0.895 0.858 0.858 0.378 0.311 0.312
6-hr 14.090 5.100 5.181 0.894 1.206 1.206 0.358 0.452 0.454

Realized Estimates with Cross-Products
1-min 14.997 0.280 0.280 0.900 0.064 0.064 0.400 0.022 0.022
2.5-min 14.992 0.482 0.482 0.900 0.111 0.111 0.400 0.038 0.038
5-min 14.985 0.623 0.624 0.900 0.143 0.143 0.400 0.050 0.050
10-min 14.971 0.883 0.883 0.901 0.202 0.202 0.399 0.070 0.070
20-min 14.943 1.249 1.250 0.900 0.285 0.285 0.398 0.099 0.099
40-min 14.888 1.758 1.762 0.898 0.404 0.404 0.395 0.142 0.142
1hr 20-min 14.788 2.475 2.484 0.896 0.570 0.570 0.389 0.203 0.203
3-hr 14.531 3.684 3.713 0.895 0.858 0.858 0.378 0.311 0.312
6-hr 14.090 5.100 5.181 0.894 1.206 1.206 0.358 0.452 0.454
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Table 2

 Range-Based and Realized Estimates with Bid-Ask Bounce

Two dollar denominated exchange rates  and  evolve as drift-less diffusions with annualizedP
1

P
2

volatility σ of 15 percent, covariance of 0.9, and correlation ρ of 0.4.  At each instant the cross-currency

 is given by the absence of triangular arbitrage as the ratio of the two base currencies.  Starting atP
3

, we simulate 24 hours worth of  regularly spaced intraday log prices usingP
1,0
'P

2,0
'1 m
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innovations with correlation ρ.  The sampling frequency m ranges from four (one observation every six

hours) to 1440 (on observation every minute). 

We use these prices to compute the bid and ask quotes  andB
i,t
' floor[P

i,t
&1/2spread, tick]

, where  and  are functions that round  downA
i,t
'ceiling[P

i,t
%1/2spread, tick] floor[x,tick] ceiling[x,tick] x

or up to the nearest tick, respectively.  The spread is set to 0.0005 and the tick size is 0.0001.  For the

cross-currency, we compute the bid and ask quotes by imposing no-arbitrage given the bid and ask quotes

of the base currencies.  We then take the observed prices as , whereP
obs

i,t 'q
i,t

B
i,t
%(1&q

i,t
)A

i,t

.  The buy-sell indicators  and  are correlated with  but theq
i,t

~Bernoulli[1/2] q
1,t

q
2,t

Corr[q
1,t

,q
2,t

]'η

indicator  is independent.  In panel A , in panel B  and in panel C .q
3,t

η'0 η'0.5 η'0.75

 We use this observed data to compute the daily range and intraday returns and then construct

three estimates of the volatilities, covariance, and correlation.  We construct range-based covariance

estimates using Parkinson’s variance estimator and . Cov[∆p
1
,∆p

2
]'1/2(Var[∆p

1
]%Var[∆p

2
]&Var[∆p

3
])

We construct realized covariance estimates using either the realized variance estimator and the same

expression for the covariance or using the cross-products of intraday returns.  We repeat this procedure

10,000 times and report the means, standard deviations, and root mean squared errors.
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Panel A:  Independent Bid-Ask Bounce with η'0

Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.512 4.278 4.306 0.826 1.121 1.124 0.327 0.344 0.352
2.5-min 14.203 4.277 4.351 0.796 1.100 1.105 0.327 0.352 0.360
5-min 14.006 4.274 4.388 0.779 1.087 1.093 0.327 0.357 0.365
10-min 13.671 4.272 4.474 0.754 1.063 1.073 0.331 0.366 0.373
20-min 13.228 4.263 4.617 0.721 1.032 1.047 0.335 0.378 0.384
40-min 12.622 4.256 4.875 0.672 0.989 1.015 0.339 0.397 0.402
1hr 20-min 11.767 4.236 5.328 0.600 0.928 0.975 0.340 0.428 0.432
3-hr 10.249 4.181 6.329 0.476 0.815 0.919 0.336 0.492 0.496
6-hr 8.228 4.093 7.912 0.337 0.675 0.879 0.332 0.606 0.609

Realized Estimates with No-Arbitrage Condition
1-min 29.645 0.490 14.653 -5.578 0.462 6.495 -0.636 0.060 1.037
2.5-min 21.036 0.641 6.070 -1.261 0.356 2.190 -0.287 0.087 0.693
5-min 18.849 0.760 3.924 -0.395 0.341 1.339 -0.114 0.100 0.524
10-min 17.010 0.990 2.241 0.253 0.351 0.736 0.082 0.118 0.339
20-min 15.994 1.327 1.658 0.578 0.396 0.511 0.217 0.141 0.231
40-min 15.422 1.820 1.868 0.736 0.486 0.513 0.296 0.177 0.206
1hr 20-min 15.058 2.515 2.516 0.815 0.629 0.635 0.335 0.232 0.241
3-hr 14.649 3.716 3.732 0.859 0.899 0.900 0.348 0.339 0.343
6-hr 14.147 5.120 5.191 0.876 1.236 1.237 0.336 0.490 0.494

Realized Estimates with Cross-Products
1-min 29.645 0.490 14.653 0.900 0.263 0.263 0.102 0.030 0.299
2.5-min 21.036 0.641 6.070 0.901 0.218 0.218 0.203 0.046 0.202
5-min 18.849 0.760 3.924 0.900 0.223 0.223 0.253 0.057 0.158
10-min 17.010 0.990 2.241 0.901 0.256 0.256 0.309 0.076 0.119
20-min 15.994 1.327 1.658 0.901 0.322 0.322 0.347 0.104 0.117
40-min 15.422 1.820 1.868 0.898 0.429 0.429 0.368 0.145 0.149
1hr 20-min 15.058 2.515 2.516 0.896 0.588 0.588 0.376 0.205 0.207
3-hr 14.649 3.716 3.732 0.895 0.870 0.870 0.371 0.312 0.314
6-hr 14.147 5.120 5.191 0.894 1.215 1.215 0.355 0.453 0.455
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Panel B:  Correlated Bid-Ask Bounce with η'0.5

Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.512 4.278 4.306 0.810 1.123 1.127 0.318 0.347 0.356
2.5-min 14.203 4.277 4.351 0.781 1.102 1.108 0.318 0.355 0.364
5-min 14.006 4.274 4.388 0.764 1.089 1.097 0.319 0.360 0.369
10-min 13.671 4.272 4.474 0.741 1.065 1.077 0.323 0.369 0.377
20-min 13.228 4.263 4.617 0.710 1.033 1.051 0.329 0.380 0.387
40-min 12.622 4.256 4.875 0.664 0.990 1.018 0.333 0.399 0.405
1hr 20-min 11.767 4.236 5.328 0.595 0.929 0.978 0.335 0.430 0.435
3-hr 10.249 4.181 6.329 0.473 0.816 0.921 0.332 0.494 0.499
6-hr 8.228 4.093 7.912 0.334 0.679 0.884 0.317 0.601 0.607

Realized Estimates with No-Arbitrage Condition
1-min 29.645 0.490 14.653 -7.812 0.548 8.729 -0.890 0.073 1.292
2.5-min 21.036 0.641 6.070 -2.006 0.398 2.933 -0.456 0.102 0.862
5-min 18.849 0.760 3.924 -0.842 0.375 1.782 -0.241 0.114 0.651
10-min 17.010 0.990 2.241 0.029 0.375 0.949 0.004 0.130 0.417
20-min 15.994 1.327 1.658 0.465 0.414 0.601 0.172 0.151 0.273
40-min 15.422 1.820 1.868 0.679 0.500 0.547 0.270 0.185 0.226
1hr 20-min 15.058 2.515 2.516 0.786 0.640 0.650 0.321 0.238 0.251
3-hr 14.649 3.716 3.732 0.846 0.906 0.908 0.341 0.343 0.348
6-hr 14.147 5.120 5.191 0.869 1.241 1.242 0.331 0.493 0.498

Realized Estimates with Cross-Products
1-min 29.645 0.490 14.653 4.140 0.265 3.251 0.471 0.024 0.075
2.5-min 21.036 0.641 6.070 1.980 0.224 1.103 0.447 0.039 0.061
5-min 18.849 0.760 3.924 1.549 0.230 0.688 0.435 0.050 0.061
10-min 17.010 0.990 2.241 1.225 0.262 0.418 0.421 0.070 0.073
20-min 15.994 1.327 1.658 1.062 0.328 0.366 0.410 0.099 0.099
40-min 15.422 1.820 1.868 0.979 0.433 0.440 0.401 0.141 0.141
1hr 20-min 15.058 2.515 2.516 0.937 0.591 0.592 0.393 0.202 0.202
3-hr 14.649 3.716 3.732 0.913 0.872 0.872 0.379 0.311 0.311
6-hr 14.147 5.120 5.191 0.904 1.216 1.216 0.358 0.452 0.454
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Panel C:  Correlated Bid-Ask Bounce with η'0.75

Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.512 4.278 4.306 0.810 1.123 1.127 0.318 0.347 0.356
2.5-min 14.203 4.277 4.351 0.781 1.102 1.109 0.318 0.355 0.364
5-min 14.006 4.274 4.388 0.764 1.089 1.097 0.319 0.360 0.369
10-min 13.671 4.272 4.474 0.741 1.065 1.077 0.323 0.369 0.377
20-min 13.228 4.263 4.617 0.710 1.034 1.051 0.328 0.380 0.387
40-min 12.622 4.256 4.875 0.664 0.991 1.018 0.333 0.399 0.405
1hr 20-min 11.767 4.236 5.328 0.595 0.929 0.978 0.335 0.430 0.435
3-hr 10.249 4.181 6.329 0.473 0.817 0.921 0.332 0.494 0.499
6-hr 8.228 4.093 7.912 0.330 0.662 0.874 0.318 0.603 0.609

Realized Estimates with No-Arbitrage Condition
1-min 29.645 0.490 14.653 -7.812 0.555 8.729 -0.890 0.075 1.292
2.5-min 21.036 0.641 6.070 -2.006 0.403 2.934 -0.456 0.104 0.863
5-min 18.849 0.760 3.924 -0.842 0.379 1.783 -0.241 0.116 0.652
10-min 17.010 0.990 2.241 0.028 0.378 0.950 0.003 0.131 0.418
20-min 15.994 1.327 1.658 0.465 0.417 0.603 0.172 0.152 0.274
40-min 15.422 1.820 1.868 0.679 0.502 0.549 0.270 0.186 0.227
1hr 20-min 15.058 2.515 2.516 0.786 0.641 0.651 0.321 0.238 0.251
3-hr 14.649 3.716 3.732 0.846 0.907 0.908 0.340 0.343 0.348
6-hr 14.147 5.120 5.191 0.869 1.242 1.243 0.331 0.491 0.496

Realized Estimates with Cross-Products
1-min 29.650 0.490 14.653 5.761 0.263 4.868 0.655 0.019 0.256
2.5-min 21.036 0.641 6.070 2.520 0.225 1.636 0.569 0.033 0.172
5-min 18.849 0.760 3.924 1.873 0.233 1.000 0.526 0.044 0.133
10-min 17.010 0.990 2.241 1.387 0.265 0.554 0.476 0.065 0.100
20-min 15.994 1.327 1.658 1.143 0.330 0.410 0.441 0.095 0.104
40-min 15.422 1.820 1.868 1.019 0.436 0.452 0.418 0.139 0.140
1hr 20-min 15.058 2.515 2.516 0.957 0.593 0.596 0.401 0.201 0.201
3-hr 14.649 3.716 3.732 0.922 0.873 0.873 0.383 0.310 0.310
6-hr 14.147 5.120 5.191 0.908 1.217 1.217 0.360 0.451 0.453
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Table 3

 Range-Based and Realized Estimates with Asynchronous Trading

Two dollar denominated exchange rates  and  evolve as drift-less diffusions with annualizedP
1

P
2

volatility σ of 15 percent, covariance of 0.9, and correlation ρ of 0.4.  At each instant the cross-currency

 is given by the absence of triangular arbitrage as the ratio of the two base currencies.  Starting atP
3

, we simulate 24 hours worth of  regularly spaced intraday log prices (oneP
1,0
'P

2,0
'P

3,0
'1 m'17280

price every second) using , , and , for k=1,...m,p
i,t%k/m

'p
i,t%(k&1)/m

%σ 250/mε
i,t%k/m

i'{1,2} p
3,t
'p

1,t
&p

2,t

where  and  are standard-normal innovations with correlation ρ.p
i
' lnP

i
[ε
1
, ε
2
]

We assign to each process n trades times randomly throughout the day and construct stale price

processes for which the price is equal to the price at the previous trade time until it is reset to the latent

true price at the next trade time.  In panel A  (an average of one trade every five minutes) and inn'288

panel B  (an average of one trade every minute).  We then sample these stale price processes at an'1440

regular frequency m ranging from four (one observation every six hours) to 1440 (one observation every

minute). 

 We use this regularly sampled data to compute the daily range and intraday returns and then

construct three estimates of the volatilities, covariance, and correlation.  We construct range-based

covariance estimates using Parkinson’s variance estimator and

.  We construct realized covariance estimates usingCov[∆p
1
,∆p

2
]'1/2(Var[∆p

1
]%Var[∆p

2
]&Var[∆p

3
])

either the realized variance estimator and the same expression for the covariance or using the cross-

products of intraday returns.  We repeat this procedure 10,000 times and report the means, standard

deviations, and root mean squared errors.
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Panel A:  288 Trades per Day

Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 13.629 4.328 4.538 0.846 1.088 1.089 0.380 0.351 0.351
2.5-min 13.608 4.329 4.545 0.844 1.087 1.088 0.379 0.352 0.352
5-min 13.557 4.315 4.548 0.838 1.080 1.082 0.379 0.353 0.353
10-min 13.371 4.305 4.601 0.816 1.072 1.075 0.378 0.361 0.361
20-min 13.029 4.307 4.734 0.786 1.047 1.052 0.380 0.369 0.369
40-min 12.509 4.300 4.967 0.731 1.009 1.022 0.379 0.391 0.392
1hr 20-min 11.651 4.252 5.411 0.652 0.960 0.991 0.375 0.429 0.429
3-hr 10.177 4.069 6.309 0.508 0.834 0.922 0.365 0.494 0.495
6-hr 8.237 3.938 7.826 0.342 0.671 0.873 0.348 0.585 0.587

Realized Estimates with No-Arbitrage Condition
1-min 14.959 0.882 0.882 0.899 0.215 0.215 0.400 0.076 0.076
2.5-min 14.959 0.894 0.895 0.898 0.218 0.218 0.400 0.077 0.077
5-min 14.961 0.907 0.907 0.899 0.220 0.220 0.400 0.078 0.077
10-min 14.973 1.077 1.077 0.894 0.261 0.261 0.397 0.092 0.092
20-min 14.929 1.360 1.362 0.883 0.324 0.325 0.392 0.118 0.118
40-min 14.900 1.860 1.862 0.884 0.433 0.433 0.390 0.160 0.161
1hr 20-min 14.824 2.531 2.536 0.910 0.614 0.614 0.391 0.225 0.225
3-hr 14.598 3.577 3.598 0.914 0.919 0.918 0.367 0.368 0.370
6-hr 14.271 5.152 5.201 0.939 1.255 1.255 0.348 0.592 0.594

Realized Estimates with Cross-Products
1-min 14.959 0.882 0.882 0.046 0.089 0.859 0.021 0.040 0.382
2.5-min 14.959 0.894 0.895 0.086 0.121 0.823 0.038 0.054 0.366
5-min 14.961 0.907 0.907 0.114 0.149 0.800 0.051 0.066 0.355
10-min 14.973 1.077 1.077 0.195 0.217 0.738 0.087 0.095 0.327
20-min 14.929 1.360 1.362 0.322 0.305 0.653 0.143 0.133 0.289
40-min 14.900 1.860 1.862 0.481 0.422 0.595 0.214 0.182 0.260
1hr 20-min 14.824 2.531 2.536 0.654 0.578 0.628 0.284 0.229 0.257
3-hr 14.598 3.577 3.598 0.821 0.848 0.851 0.339 0.320 0.326
6-hr 14.271 5.152 5.201 0.892 1.188 1.188 0.350 0.459 0.462



- 29 -

Panel B:  1440 Trades per Day

Sampling

Frequency

Standard Deviation Covariance  Correlation

Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.037 4.333 4.436 0.894 1.115 1.115 0.382 0.341 0.341
2.5-min 13.872 4.333 4.475 0.872 1.107 1.106 0.380 0.347 0.348
5-min 13.743 4.335 4.511 0.858 1.098 1.098 0.379 0.350 0.351
10-min 13.472 4.315 4.575 0.826 1.078 1.079 0.377 0.359 0.359
20-min 13.096 4.308 4.708 0.789 1.050 1.055 0.377 0.367 0.368
40-min 12.531 4.280 4.939 0.730 1.017 1.030 0.374 0.391 0.392
1hr 20-min 11.674 4.250 5.395 0.646 0.958 0.991 0.368 0.428 0.429
3-hr 10.212 4.122 6.316 0.516 0.837 0.920 0.373 0.485 0.486
6-hr 8.279 3.997 7.819 0.349 0.667 0.865 0.345 0.592 0.595

Realized Estimates with No-Arbitrage Condition
1-min 14.989 0.405 0.405 0.898 0.097 0.097 0.399 0.034 0.034
2.5-min 14.964 0.559 0.560 0.891 0.133 0.133 0.397 0.046 0.046
5-min 14.952 0.678 0.680 0.888 0.163 0.163 0.395 0.057 0.057
10-min 14.940 0.932 0.934 0.891 0.222 0.222 0.396 0.079 0.079
20-min 14.923 1.292 1.294 0.882 0.315 0.315 0.390 0.113 0.113
40-min 14.898 1.773 1.775 0.898 0.433 0.433 0.394 0.158 0.158
1hr 20-min 14.836 2.463 2.468 0.913 0.591 0.591 0.391 0.220 0.220
3-hr 14.680 3.597 3.609 0.924 0.867 0.867 0.379 0.328 0.329
6-hr 14.255 5.138 5.189 0.936 1.214 1.214 0.361 0.483 0.484

Realized Estimates with Cross-Products
1-min 14.989 0.405 0.405 0.096 0.096 0.810 0.043 0.042 0.360
2.5-min 14.964 0.559 0.560 0.205 0.172 0.716 0.091 0.076 0.318
5-min 14.952 0.678 0.680 0.266 0.212 0.668 0.119 0.094 0.296
10-min 14.940 0.932 0.934 0.387 0.257 0.574 0.173 0.112 0.253
20-min 14.923 1.292 1.294 0.545 0.317 0.476 0.243 0.133 0.206
40-min 14.898 1.773 1.775 0.700 0.402 0.449 0.310 0.161 0.185
1hr 20-min 14.836 2.463 2.468 0.824 0.558 0.563 0.356 0.210 0.214
3-hr 14.680 3.597 3.609 0.881 0.851 0.851 0.364 0.318 0.319
6-hr 14.255 5.138 5.189 0.934 1.199 1.199 0.364 0.459 0.460
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Table 4

Multivariate GARCH(1,1) Estimates

We present maximum likelihood estimates of the bivariate diagonal GARCH(1,1) model, potentially with

range-based variance/covariance variables included in the variance/covariance equations.  The model is:

and the volatility dynamics:

where  is the mark/dollar return,  is the yen/dollar return, , , and  are the range-based mark∆p
1

∆p
2

x
1

x
2

x
12

and yen return volatilities and covariance, and the return innovations are conditionally Gaussian.

The data are daily returns and range-based volatility estimates for the front-month mark and yen

and futures contracts.  The cross-rate ranges are constructed from future transactions data as described in

the text.  The sample period is January 3, 1990 through December 30, 1998 (2,189 observations).
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Observable Predetermined Variables Included in Variance / Covariance Equations

(A) 
Lagged Return Square

or Cross Product

(B) 
Lagged Return Square

or Cross Product,
and 

Range-Based Var. or Cov.

(C) 
Range-Based Var. or Cov.

Parameter Estimate t-Stat Estimate t-Stat Estimate t-Stat

-3.63x10-5 -0.311 -9.75x10-5 -0.840 -9.83x10-5 -0.852 µ
1

-7.59x10-6 -0.059 -4.80x10-5 -0.392 -5.01x10-5 -0.373 µ
2

  6.45x10-7 5.563 6.40x10-7 4.850 6.59x10-7 4.793ω
1

  1.03x10-6 8.229 1.21x10-6 7.210 1.31x10-6 6.426ω
2

  4.15x10-7 5.232 4.89x10-7 4.820 5.03x10-7 5.440ω
3

0.942 163.931   0.920 111.970   0.921 110.492   β
1

0.931 192.835   0.889 121.340   0.887 119.963   β
2

0.940 222.936   0.916 145.010   0.918 142.214   β
3

0.052 10.937 -0.008 -1.217 α
1

0.055 19.873 0.013 1.930α
2

0.051 14.830 0.008 1.350α
3

0.099 7.493 0.096 11.369 δ
1

0.084 6.661 0.110 15.247 δ
2

0.085 8.824 0.099 13.331 δ
3

Log Likelihood 21431.45 21474.92 21470.31
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Figure 1

Range-Based Volatilities and Correlation



- 33 -

1990 1991 1992 1993 1994 1995 1996 1997 1998

0.0

0.1

0.2

0.3

0.4

0.5

DM/$ Volatility

1990 1991 1992 1993 1994 1995 1996 1997 1998

0.0

0.1

0.2

0.3

0.4

0.5

Yen/$ Volatility

1990 1991 1992 1993 1994 1995 1996 1997 1998

-0.50

-0.25

 0.00

 0.25

 0.50

 0.75

 1.00

DM/$ and Yen/$ Correlation

Figure 2

Bivariate GARCH(0,1) Volatilities and Correlation with 

Range-Based Estimates as Exogenous Predictors
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