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Nontechnical Summary

What if our perception of the structure of the economy is seriously wrong? Can one

take out any insurance against the uncertainty surrounding the effects of monetary policy?

How can one quantify the economic cost of this insurance? These questions motivate much

of the recent literature on policy robustness and model uncertainty. In light of the short

history of the common currency, they seem especially relevant for the euro area.

In this paper, specific models of the euro area economy are taken to represent the

controversial views about monetary policy transmission held within the academic world

and the European Central Bank. We consider four models of the euro area which differ

substantially with respect to their modeling strategies – and especially with regard to

their degree of intrinsic persistence and the modeling of expectations. At the forward-

looking edge we consider the microfounded, hence forward-looking, model of Smets and

Wouters (2003). The small-open economy Area Wide Model by Fagan et al. (2001),

which we also include in our study, yet models the economy as rather sluggish and puts

limited emphasis on forward-looking private sector expectations. We also consider two

specifications of the closed-economy models proposed by Coenen and Wieland (2005)

which range in between the two aforementioned models with respect to microfoundations

and the treatment of expectations. We deem this model space sufficiently diverse to

examine the cost of insurance against model uncertainty for the euro area.

Naturally, given the range of output and inflation dynamics implied by these models

no rule can ever be found that is optimal in one of them (the perceived economy) but

still performs almost optimal when implemented in another model economy (the actual

economy). Thus, we seek to identify rules that effectively help insure against particularly

bad outcomes but still deliver fairly good performance in all of the models. In other words,

we attempt to identify insurance policies for monetary policy that come at an affordable

cost in terms of expected deterioration of macro-economic stabilization performance.

In doing so, we limit ourselves to the performance of simple Taylor type rules, which

link interest rate setting to contemporaneous inflation and output gaps. We look at

two different preferences. Under “Bayesian” preferences the policymaker attaches a spe-

cific probability weight to each of the four models. As a benchmark we take flat priors,

i.e. equal weights for all models. Under “Minimax” preferences, the policymaker is as-



sumed to be completely agnostic with respect to the probability that a specific model

may represent the actual economy. Therefore he seeks to take out best possible insurance

against the worst possible outcome.

We find that maximal insurance across this model range comes at moderate cost in

terms of lower expected performance. The insurance premium is small. Depending on

relative preferences for nominal and real stabilization, compared to Bayesian policy un-

der flat priors expected loss rises by roughly 1% for a 1% reduction in worst case loss.

Maximum possible insurance is, however, limited to a reduction of worst-case losses by

7%, again relative to the policy under flat priors. Next we rationalize Minimax prefer-

ences from an expected utility, Bayesian perspective. We ask which probability weights

(priors) a policy maker who minimizes expected loss would have to assign to each model

so that he would implement the full insurance, Minimax, policy. These priors indicate

that Minimax is very strongly oriented towards the economy which is hardest to stabilize

under model certainty. This policy turns out to be not as tolerant towards small errors (in

figurative terms, the policy maker’s “trembling hands”) in the policy making process as

the Bayesian policy rule. While Minimax priors will be helpful in highlighting the model

risk characteristics, they may therefore not be directly suitable for practical policy advice.

We propose to strike a compromise instead and use preferences for policy design that

allow for intermediate degrees of ambiguity-aversion. These preferences permit the speci-

fication of priors but also give extra weight to the worst uncertain outcome. The implied

priors and the premia that we compute are intended to help policy makers in refining

their views on alternative reference models and in reconsidering their desired degree of

insurance. For practical application, an iterative procedure using implied priors and cal-

culating the cost of alternative degrees of insurance should be a useful tool for policy

design as it traces out the (model) risk-performance profile of monetary policy.



1 Introduction

What if our perception of the workings of the economy and the effects of monetary policy
is seriously biased? Can we take out any insurance against this uncertainty? These are
practical questions faced by policy makers that motivate much of the recent literature
on policy robustness and model uncertainty. One line of research has applied various
forms of worst-case analysis to insure against perturbations of single reference models of
the economy.1 Another line of research has focused on comparing policy rules across a
limited set of well-studied reference models.2 We follow the second approach and consider
four models of the Euro area, all of which are being used for monetary policy analysis at
the European Central Bank.

Our starting point is an investigation of the performance of simple rules that are
optimized for one specific model across the other models as in the preceding literature.3

Given the range of output and inflation dynamics implied by the models considered in
this study it is not likely to find fully robust rules in this manner. Thus, the main
purpose of our paper is to identify rules that are effective at insuring against particularly
bad outcomes while still delivering fairly good performance compared to rules optimized
within each model. Or in other words, we attempt to identify insurance policies for
monetary policy that come at an affordable cost in terms of expected performance loss
compared to model-specific rules. To this end, we employ Bayesian as well as Minimax
analysis.

We take Sims’ (2001) criticism that Minimax policies may imply unreasonable priors
seriously and construct the priors that would rationalize our Minimax policies from a
Bayesian perspective. We confirm that those priors may seem excessively biased towards
one model to most policy makers. As a compromise we propose so-called ambiguity-averse
preferences for policy design. These preferences allow the specification of priors but also
give extra weight to the worst uncertain outcomes in a given context (see also Brock et al.,
2003). We also consider extensions to non-quadratic preferences and carefully analyze the
implications of small perturbations in our policies (i.e. the policy maker’s “trembling

1 See for example Sargent (1999), Hansen and Sargent (2002), Giannoni (2001,2002), Onatski and
Stock (2002), Onatski and Williams (2003), Tetlow and von zur Muehlen (2001), Tetlow and von zur
Muehlen (2004) and Zakovic, Rustem and Wieland (2004). An early contribution is von zur Muehlen
(1982).

2 See for example Levin, Wieland and Williams (1999, 2003), Levin and Williams (2003) and Coenen
(2003). Early contributions are Becker, Dwolatzky, Karakitsos and Rustem (1986) and McCallum
(1988).

3 In 2003 a Euro system project was started with the objective of evaluating robustness of policy
rules across relevant Euro area models in the vein of Levin et al. (1999, 2003) and Coenen (2003).
Wieland and Küster were involved in this project in 2003, Wieland as a consultant in two project
meetings and Küster as an intern contributing to the preparation for this project of one the models,
the Area-Wide model of Fagan et al. (2001). The first ECB paper out of this project, Adalid et al.

(2004), and the present paper were written in parallel and independently for the ECB Conference
on ‘Monetary policy and imperfect knowledge’ in Würzburg, October 14-15, 2004. As a result they
present interesting alternative views on the question how to design robust policy for the Euro area.



hand”) for policy performance.
The remainder of the paper is structured as follows. Section 2 provides a brief overview

of the models used in this study. Section 3 discusses the risks of focusing on one model and
the insurance properties of Bayesian policy. Section 4 provides further perspectives on
robustness, namely a look at full insurance, intermediate ambiguity aversion and differing
degrees of risk aversion. The conclusions follow. Further details of the analysis, methods
and sensitivity studies are discussed in the appendices.

2 The Models

Each of the models considered in this study exhibits long-run monetary neutrality as well
as short-run nominal inertia. As a result, monetary policy has short-run real effects and
the central bank enjoys the ability to stabilize inflation and output fluctuations. The
central bank also faces substantial uncertainty regarding output and inflation dynamics
and policy effectiveness that is reflected in the differences between these models. The
models differ, for example, in the degree of forward-looking expectation formation, the
extent of optimizing behavior by economic agents, and in terms of magnitude, scope and
parameter estimates. The four models, which have all been developed at the ECB, are
estimated with (or calibrated to) aggregate quarterly Euro area data.

The Area-Wide model (AW) (see Fagan et al., 2001) is a linearized version of the model
used as an element in the ECB’s forecasting process. Expectation formation in this model
is largely backward-looking. The two models of Coenen and Wieland (2005) are much
smaller but incorporate forward-looking expectations. The CW-T variant with Taylor-
style staggered wage contracting (see Taylor, 1980) exhibits less nominal rigidity than the
CW-F variant with Fuhrer-Moore style contracts (see Fuhrer and Moore, 1995). Finally,
the Smets and Wouters (2003) model (SW) most completely embodies recent advances
in modelling optimizing behavior of economic agents. For a more detailed discussion of
these models we refer the reader to the appendix A.

To provide a common empirical benchmark for monetary policy in these models, we
use a rule estimated with euro area data by Gerdesmeier and Roffia (2003). We adjust
the monthly estimates to a quarterly frequency:

rt = 0.873rt−1 + (1 − 0.873) (1.93πt + 0.28yt) .

Figure 1 reports autocorrelation functions for the four models using the identical interest
rate rule. In computing these we assume that the central bank credibly commits to
following the Gerdesmeier-Roffia rule.

As a basis for comparison we show the autocorrelation function implied by the actual
data (solid line), which indicates that inflation and the output gap exhibit substantial
persistence. The four models imply quite different dynamics thereby spanning a significant
range of model uncertainty. In the CW-T and SW models inflation dynamics die out
within 6 quarters, while the CW-F model generates somewhat longer-lasting dynamics.



Figure 1: Autocorrelation Functions
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Figure 1: Autocorrelation functions. Shown are the autocorrelations of inflation and the output gap
under the rule rt = 0.873rt−1 +(1−0.873) (1.98πa

t +0.28yt) estimated by Gerdesmeier and Roffia (2003).
Also shown is the autocorrelation in the data. The data are from the AWM data set and range from
1985:1 to 2002:4. The inflation series has been linearly detrended. Model autocorrelations lie within ±2
standard deviation bounds (not shown) of the data. The standard deviation for ρ̂j is computed on the
assumption that the data generating process is an MA(j-1).

The AW model stands out with the highest degree of inflation persistence. Output is
strongly serially correlated in the AW model and the CW-T model, but less so in the SW
and CW-F models. In spite of these differences, the four models fall within the +/- 2
standard deviation bands we computed (not shown).4

To illustrate the extent of uncertainty about policy effectiveness, we report impulse
response functions for inflation and the output gap in Figure 2. We simulate a 100
basis point interest rate shock assuming that monetary policy subsequently follows the
Gerdesmeier-Roffia rule. Again, the AW model generates the highest degree of endoge-
nous persistence with inflation reaching its trough more than five years after the shock.
Similarly, output returns only very gradually to baseline in this model. The SW model
again marks the smallest degree of output and inflation persistence. The CW-F and CW-
T models lie in between in terms of persistence of the dynamics in response to a policy
shock. As expected Taylor-contracts generate less inflation persistence than Fuhrer-Moore
contracts but output is more persistent in the CW-T model.

Table 1 compares the unconditional second moments of inflation, the output gap and
the change in the nominal interest, π, y and ∆r, in the above models with those of the
data. Under the Gerdesmeier-Roffia rule the CW-F model induces the highest variance

4 Of course, these significance bands heavily depend on assumptions made regarding the data-generating
process.



Figure 2: Impulse Responses
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Figure 2: Impulse-responses to a 100bps temporary unanticipated rise in the nominal short term rate.
The monetary policy rule is the Gerdesmeier and Roffia (2003) rule, ρ = 0.873, α = (1 − 0.873)1.93,

β = (1 − 0.873)0.28, with annual inflation. All variables are measured in percentage points.

for inflation–more than twice as the SW model and consequently rather high variability
of interest rate increments. All models generate a standard deviation of the output gap
that is almost twice the value observed in the data (2.5 for the AW model).

3 Policy Performance Across Models

In this study we focus on interest rate reaction functions that belong to the class of simple
outcome-based Taylor-style rules

rt = ρrt−1 + απt + βyt, (1)

with three response parameters (ρ, α, β) corresponding to the lagged interested rate rt−1,
the year-on-year inflation rate πt and the output gap yt, all in deviations from steady
state.5

5 Simple outcome-based rules of this form tend to be more robust than rules with more states (see
Levin et al., 1999) and forecast-based rules with longer horizons (see Levin et al., 2003). Further im-
provements in stabilization performance that can be achieved with forecast based rules, are hampered



Table 1: Standard Deviations

y π ∆r

Data 1.0 0.8 0.5

CW-F 2.0 2.2 0.9

CW-T 1.9 1.1 0.5

SW 2.1 0.8 0.4

AW 2.5 1.3 0.4
Unconditional standard deviations of the target variables in
the four models when the policy maker commits himself to the
Gerdesmeier and Roffia (2003) rule (with year on year inflation
rates). Also shown are the standard deviations in the data. The
sample and the data source are as in Figure 1.

To measure policy performance and determine the cost of insurance against model
uncertainty we use the weighted sum of unconditional variances of inflation, the output
gap and the change in the interest rate, which is consistent with a standard quadratic loss
function (see Levin et al., 1999, 2003, Coenen, 2003, and others in this literature),6

Lm = Var (π) + λyVar (y) + λ∆rVar (∆r) , m ∈ M. (2)

Var(·) denotes the unconditional variance, while M = {CW-F, CW-T, SW, AW} com-
prises the model space. The parameter λy ≥ 0 determines the policy maker’s preference
for reducing output variability around potential relative to curbing inflation variability.
The weight λ∆r > 0 introduces a preference for restraining the variability of changes to
nominal interest rates. For the remainder of this paper we use values of λy ∈ {0, 0.5, 1}
that cover the range from strict to flexible inflation targeting and values of λ∆r ∈ {0.5, 1}.7

3.1 Rules Across Models

For comparing rules across models and measuring costs of insurance we use the outcome
under commitment to the best simple rule of the type specified by equation (1) in each
model. The best simple rule is obtained by choosing the response parameters, (ρ, α, β), in
(1) so as to minimize the loss defined by equation (2) for each model.8 Table 2 summarizes

by the need for a forecasting model that may be incorrect and introduce additional uncertainty (see
Levin et al., 2003, and Coenen, 2003).

6 An interesting alternative measure would be the welfare of the representative consumer in the Smets
and Wouters (2003) model.

7 These values for λ∆r ensure that interest rate variability does not stray very far from what is observed
empirically for the Euro area. We have conducted further sensitivity studies that are not reported in
this version of the paper.

8 An alternative would be to use the overall first-best policy under commitment as a benchmark. We



the parameters of the simple rules optimized for each model for the three different values
of the weight on output variability in the loss function, λy. λ∆r is set to 0.5.

Table 2: Optimized Simple Rules

λy = 0 λy = 0.5 λy = 1

Model ρ α β ρ α β ρ α β

CW-F 0.9 0.8 0.4 0.8 0.7 0.6 0.8 0.7 0.8

CW-T 1.0 0.3 0.1 0.8 0.2 0.6 0.8 0.2 0.8

SW 1.0 0.4 0.0 1.0 0.2 0.8 1.0 0.2 1.3

AW 0.6 0.5 0.5 0.4 0.6 1.3 0.4 0.5 1.7

Parameters of optimal simple rules for each model. Shown is the case λ∆r = 0.5 for loss function (2).

The best rule in the CW-F model features moderate to strong interest rate smoothing
(ρ between 0.8 and 0.9) and strong feedback to inflation (α = 0.8). The best CW-T
rule implies a bit more interest smoothing (greater ρ) but smaller response coefficients for
inflation due to the lower degree of inflation persistence. The best SW policy consistently
uses the highest weight on the lagged interest rate (ρ = 1) essentially implementing a
first-difference rule. It is well-known from earlier research that the prominence of rational
expectations and forward-looking behavior in models with optimizing agents renders such
a policy strategy optimal. In sharp contrast the rule optimized in the AW model exhibits
much lower values of ρ ranging between 0.4 and 0.6. Optimal AW policy also features a
strong feedback to the output gap as a proxy for future inflation (see also Dieppe et al.,
2004).

The performance of simple rules optimized for one model in the other three models is
sufficiently diverse to deem it risky to use a single reference model. Table 3 reports the
percentage increase in loss when using a rule optimized for Model X in Model Y relative
to the rule that is optimal for Y. We confirm earlier results in the literature. Rules with a
high degree of interest-rate smoothing such as those optimized in the SW model generate
substantial losses and even explosiveness in models with a significant backward-looking
component such as the AW model. On the other hand, policy designed for models with
strong intrinsic persistence such as AW may not be active enough to anchor expectations
if agents indeed were more forward-looking. For example, for λy = 1.0, the best AW
policy would imply indeterminacy in CW-F and CW-T. Otherwise percentage losses are
largest in AW and CW-F, reaching up to 360%.

have not done so because we are interested in measuring the cost of insurance implied by a simple
rule (chosen due to a preference for robustness concerning model uncertainty), rather than being
interested in the benefits that may be possible from first-best policy compared to simple rules in any
specific model. For this purpose the model-optimized simple rule is the proper benchmark. As to
the potential benefits of first-best policies compared to optimized three-parameter rules, those are
moderate for models with rational expectations but can be substantial for models with primarily
backward-looking expectations (see Dieppe et al., 2004).



Table 3: Robustness of Rules Optimized for a Specific Model: Relative Losses

CW-F rule evaluated in CW-T rule evaluated in

λy CW-T SW AWM CW-F SW AW

0.0 31 53 126 161 9 ∞

0.5 12 17 82 103 15 29

1.0 12 27 71 145 18 36

SW rule evaluated in AW rule evaluated in

λy CW-F CW-T AW CW-F CW-T SW

0.0 360 8 ∞ 78 24 78

0.5 66 19 324 167 15 49

1.0 101 26 220 ME ME 54

Percentage losses relative to first-best simple rule for each model (in %). The notation “∞”
indicates that the implemented rule results in instability; the notation “ME” indicates that the
implemented rule results in multiple equilibria. Shown is the case λ∆r = 0.5 for loss function
(2).

The percentage losses reported in Table 3, which have been commonly used in the
recent literature, may overemphasize the extent of model uncertainty in particular when
the baseline loss is rather low or when the loss function heavily penalizes small deterio-
rations9 in economic outcomes. Similarly, substantial changes in economic outcomes may
be de-emphasized when the baseline loss is already large.

As a remedy to this drawback of relative percentage losses we introduce the implied
premium on inflation variability or “Implied Inflation Premium”, the IIP. This premium
measures the increase in the standard deviation of inflation relative to the outcome under
the best simple rule that is necessary to match the loss under the alternative policy. In
other words, we attribute the deterioration in loss that results from a lack of robustness
entirely to inflation variability keeping the standard deviation of output and interest rates
at the benchmark level. The benefit of this premium is that units are intuitive (percentage
points of the inflation rate) and interpretable on an economic scale. The corresponding
premia are reported in Table 4.

The implied inflation variability premia shed new light on the comparison of rules
across models. With no weight on the output gap the SW model exhibits low baseline
losses. Using the CW-F policy in the SW model implies an increase in loss of 53%
(cp. Table 3), which seems sizeabe. The IIP of 0.16 percentage points on annual inflation

9 A case in point are the non-quadratic preferences discussed in Section 4.3.



Table 4: Robustness of Model-Specific Rules: Implied Inflation Premia

CW-F rule evaluated in CW-T rule evaluated in

λy CW-T SW AWM CW-F SW AW

0.0 .15 .16 .56 1.13 .03 ∞

0.5 .10 .11 .79 1.03 .09 .34

1.0 .13 .19 .93 1.57 .13 .55

SW rule evaluated in AW rule evaluated in

λy CW-F CW-T AW CW-F CW-T SW

0.0 2.06 .04 ∞ .63 .12 .23

0.5 .72 .16 2.06 1.50 .12 .28

1.0 1.18 .27 2.01 ME ME .36

Implied Inflation (Variability) Premium relative to first-best simple rule for each model (in
percentage points). The notation “∞” indicates that the implemented rule results in instability;
the notation “ME” indicates that the implemented rule results in multiple equilibria. Shown
is the case λ∆r = 0.5 for loss function (2).

(an increase from 0.82 to 0.98 percentage points, say), however, is rather small. Similarly,
using the CW-F policy in AW generates an increase in losses of 126%, which appears
prohibitive. The implied increase of 0.56 percentage points in inflation variability is
sizeable but does not appear extreme. As these examples show, relative losses may be
misleading. We will therefore report the IIP where appropriate in the remainder of the
paper.

3.2 The Bayesian Perspective

A natural first step in the search for a rule that performs more consistently across models
than the rules discussed in the preceding sub-section is to take a Bayesian perspective
as recommended by Levin et al. (2003). A more robust rule could thus be found by
minimizing a weighted loss function. The Bayesian loss is

LB = min
(ρ,α,β)

EM{Lm} = min
(ρ,α,β)

∑

m∈M

pmLm, (3)

where pm are the policy maker’s priors as to model m. As a start, we consider flat pri-
ors pm = 1/|M|. The performance of the Bayesian policy in terms of implied inflation



variability premia is reported in Table 5. Considering all models in policy design in this

Table 5: Flat Bayesian Priors versus Model-Specific Simple Rules

Optimal Rule Inflation (Variability) Premium

λy ρ α β CW-F CW-T SW AW

0.0 0.8 0.6 0.4 .07 .10 .16 .12

0.5 0.7 0.7 0.8 .09 .08 .14 .26

1.0 0.7 0.8 1.1 .11 .12 .21 .32

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to the simple rules
optimized for each model (in percentage points). Shown is the case λ∆r = 0.5 for loss function (2).

manner already avoids the extreme outcomes such as indeterminacy and mulitple equilib-
ria in forward-looking models or explosiveness in backward-looking models. Furthermore
the increase in inflation variability that would match the increase in loss relative to the
optimized model-specific rules is contained at a maximum of 0.32 percentage points on the
standard deviation of annual inflation. Since CW-F features by far the highest benchmark
losses of all models (cp. Table 1), it implicitly receives most of the weight in the Bayesian
optimization. The Bayesian rule with flat priors looks much like the best CW-F policy
albeit with less interest rate smoothing. The reduction in ρ serves to help performance
in the AW model.

3.3 Fault Tolerance of Bayesian Policy

Levin and Williams (2003) have proposed so-called fault tolerance as a diagnostic tool
in assessing robustness. They suggest to plot variations in the policy rule parameters
against percentage increases in losses for each model. The procedure implies varying one
parameter at a time while keeping the others fixed at the values implied by the best simple
rule for each model. A model is deemed fault tolerant if deviations from the best rule
for that model do not trigger a steep increase in losses. A drawback of this procedure is
that comparisons across models are not ceteris paribus in terms of the policy parameters.
For example, when varying the smoothing parameter, ρ, policy rules used in the different
models also have different responses to inflation and the output gap, α and β. Thus, we
decided to use the concept of fault tolerance somewhat differently. We ask whether policy

is fault tolerant, meaning in particular whether minor perturbations in policy parameters
have only a minor impact on performance. Our findings for the Bayesian flat prior policy
are displayed in Figure 3. Each column of three panels considers implied inflation inflation
premia across the four models when varying one parameter of the Bayesian rule at a time,
while keeping the others fixed. The respective columns are associated with values for the
preference parameter λy of zero and one, corresponding to a strict and flexible inflation
targeting central bank respectively. Policy is fairly tolerant to deviations in α and β.
IIP’s do not rise fast in the neighbourhood around the optimal parameter values. The



Figure 3: Fault Tolerance for Flat Bayesian Priors
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Figure 3: For each of the models, a line traces out the Implied Inflation
(Variability) Premium (in basis points) under the flat Bayesian policy as
the specified parameter of the policy rule is varied, holding the other two
parameters fixed at their respective values under flat Bayesian priors. The
left (right) panel pertains to the preferences for λy = 0(1) and λ∆r = 0.5.

A vertical line marks the optimal Bayesian parameter values.



admissible range of variations is smaller for ρ but still permits a safety margin for a policy
maker with “trembling hands”. We conclude that Bayesian policy under flat priors is
fault tolerant.

4 Perspectives on Robustness

4.1 Full Insurance

Bayesian optimization with flat priors is one possible approach when policymakers are
fairly agnostic which among a set of models is most appropriate as tool for policy design.
Alternatively, such an agnostic policy maker could ask how to best insure herself against
adverse model risk, or in other words, how to avoid worst case outcomes. This question
can be answered by Minimax analysis. It corresponds to a game between a policy maker
who attempts to minimize loss and nature, which chooses from the model space so as to
maximize loss,

LM = min
(ρ,α,β)

max
m∈M

Lm. (4)

Appendix B describes the algorithm we use to solve the minimax problem in more detail.
The policy rule coefficients and premiums implied by such a full insurance policy are
summarized in Table 6. The minimax or full insurance policy is close to the best rule for

Table 6: Minimax Policy Relative to Model-Specific Rules

Optimal Rule Inflation (Variability) Premium Loss Premium

λy ρ α β CW-F CW-T SW AW ∆Lworst ∆Lexpect

0.0 0.9 0.8 0.5 0 .15 .16 .57 7 17

0.5 0.8 0.7 0.6 0 .10 .11 .73 7 9

1.0 0.8 0.7 0.8 0 .13 .20 .77 7 6

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to first-best simple
rule for each model (in percentage points). Shown is the case λ∆r = 0.5 for loss function (2). ∆Lworst :
percentage reduction of worst-case loss relative to worst outcome under flat Bayesian priors. ∆Lexpect :
percentage increase in expected loss relative to Bayesian policy (flat priors).

the CW-F model, that is the model with the highest baseline loss. The Implied Inflation
Premia are relatively modest for the CW-T and SW models but increase with the AW
model, adding up to 0.77 percentage points to the standard deviation of the annual
inflation rate. The deterioration in stabilization performance compared to model-specific
rules in the AW model is noticeably stronger than under the Bayesian policy with flat
priors (cp. Table 5).



Overall, the costs for insuring against model risk seem moderate given the considerable
range of output and inflation dynamics in the model space. Expected loss relative to flat
Bayesian priors increases by 6 to 17%. Similarly the gains from insurance relative to
Bayesian policy in the worst case scenario are moderate. Since the CW-F model already
receives much weight under a flat Bayesian policy, worst-case losses are only reduced by
seven percent. Finally, we note that insurance premiums, i.e. the cost of an increase in
expected loss for a given reduction of worst-case loss, decrease as the policy maker puts
more weight on the output gap.

Inspired by Sims (2001), who has criticized Minimax for often implying economically
unreasonable priors, we proceed to extract the priors that would rationalize the Minimax
policy from a Bayesian perspective. The procedure involved is discussed in appendix C.
The implied priors are shown in Table 7. These priors indicate again that model risk in

Table 7: Minimax Implied Priors

λy CW-F CW-T SW AW

0.0 1.000 0.0 0.0 0.000

0.5 0.989 0.0 0.0 0.011

1.0 0.961 0.0 0.0 0.039

Bayesian priors backing the flat minimax solution. Shown
is the case λ∆r = 0.5 for loss function (2).

the space we consider lies mainly with the CW-F model. Recall that under the specifically
optimized CW-F rule inflation in that model is substantially more volatile than in the
AW model (0.9 to 1.6 percentage points), while the output gap is somewhat more volatile
in AW (2.0 relative to 1.4 percentage points). Thus, as the preference parameter on the
output gap, λy, increases this volatility difference gains more importance in the Minimax
calculus and the AW model receives some (albeit small) weight in the priors implied by
the minimax policy. Neither the CW-T nor the SW model ever appear among the worst
case losses.

Interestingly the minimax policy looses the fault tolerance property enjoyed by the
Bayesian rule with flat priors. Figure 4 displays fault tolerance plots for the parameter
on the lagged interest rate, ρ.10 Minor changes in policy can lead to a strong increase
in the Implied Inflation Premia for the AW model, which does not respond well to a
high degree of interest-rate smoothing (see also Dieppe et al., 2004). Minimax monetary
policy only just avoids the latter problem in the AW model but not with a wide enough
security margin. Thus, “trembling hands” in the conduct of policy could have a strong
negative impact when implementing a policy that attempts to guard against worst-case
model uncertainty.

10 The Minimax policy is similarly fault intolerant with respect to the other parameters of the rule.
Plots are available upon request.



Figure 4: Fault Intolerance for Full Insurance Policy
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Figure 4: For each of the models, a line traces out the Implied Inflation (Variability) Premium (in basis
points) under the full insurance policy as the persistence parameter of the policy rule is varied, holding
the other two parameters fixed at their respective values under the full insurance policy. The left (right)
panel pertains to the preferences for λy = 0 (1) and λ∆r = 0.5. A vertical line marks the optimal Minimax
parameter value.

4.2 A Compromise

Implied priors of the Minimax policy provide the policy maker with useful information
regarding the risks associated with alternative models and how much weight each of the
models receives in the worst-case analysis. In the previous section one model, CW-F,
dominated all others in influencing the Minimax outcome or what we called the full
insurance policy. Of course, policy makers that prefer the CW-F model over all others
will find it easy to accept the policy conclusions from the Minimax approach. Also,
if policymakers are not willing to define any priors over the model space, the case of
Knightian uncertainty, then the Minimax solution will be appealing even if it focusses
almost exclusively on one model. However, the critique of Sims (2001) that the priors
needed to justify worst-case policies from a Bayesian perspective may be too extreme will
ring true with policy makers in light of the case shown here.

As a solution to this quandary we propose to take some prior information (or pref-
erences across models) into account and balance this prior (or preference) against the
worst uncertain outcome. Following Epstein and Wang (1994) such preferences may be
formalized as follows

LA = min
(ρ,α,β)

{
(1 − e)

∑

m∈M

pmLm + e max
m∈M

Lm

}
, (5)



where e ∈ [0, 1] indexes the degree of desired insurance against worst case outcomes.
These preferences are also called ambiguity averse (see Brock et al., 2003) because the
actor places extra weight on the worst uncertain outcome.11 At the one extreme, e = 0,
these preferences amount to minimizing expected losses from Bayesian perspective. At
the other extreme, e = 1, this coincides with the Minimax policy displayed in Table 6.
The desired level of insurance, e, and the model priors, pm, may be chosen by the policy
maker. As an example, we consider a policy maker with profound priors or preferences
for the CW-T model (i.e. pCW−T ≈ 1, and pm ≈ 0 for all other models). He is sufficiently
open-minded, however, to consider worst cases across the full model space. To reflect this
open-mindedness we set e = 0.5. Table 8 reports the policy rules and Implied Inflation
(Variability) Premia for this case.

Table 8: Ambiguity Averse CW-T Policy Across Models

Optimal Rule Inflation (Variability) Premium

λy ρ α β CW-F CW-T SW AW

0.0 0.9 0.7 0.4 .01 .11 .14 .51

0.5 0.8 0.6 0.6 .01 .07 .10 .74

1.0 0.8 0.6 0.8 .01 .09 .18 .78

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative
to first-best simple rule for each model (in percentage points). Shown is the case
λ∆r = 0.5 for loss function (2).

The performance results reflect the compromise made by the policy maker. Perfor-
mance in the more forward-looking CW-T and SW models improves relative to Minimax
outcomes. Policy exhibits more interest-rate smoothing and reacts less to inflation than
under Minimax. Thus, it has incorporated some of the policy features that were optimal
under the CW-T model (cp. Table 2). From Table 9 it can be seen that the CW-F model
still has a strong influence and the AW only a small influence as measured by implied
priors. But now the implied priors also respect the CW-T model. With the implied priors
and the IIPs at hand the policy maker has extracted new information that will be helpful
in implementing a suitable insurance policy.

4.3 Non-Quadratic Preferences

So far, the policy robustness literature has focused primarily on linear-quadratic models.
As a final point of this paper, we examine the robustness of above policy conclusions to

11 The preferences are a special case of Epstein and Wang’s (1994) “ǫ-contamination” preferences.
Strictly speaking, also the minimax preferences reflect ambiguity aversion, of course.



Table 9: Ambiguity Averse CW-T Implied Priors

λy CW-F CW-T SW AW

0.0 0.500 0.5 0.0 0.000

0.5 0.499 0.5 0.0 0.001

1.0 0.476 0.5 0.0 0.024

Bayesian priors backing the ambiguity averse solution.
Shown is the case λ∆r = 0.5 for loss function (2). Param-
eters for the CW-T ambiguity averse solution are e = 0.5,

pCW−T ≈ 1 and pm ≈ 0 for all other models.

the assumption of quadratic losses. To this end, we consider a generalized loss function
that allows alternative degrees of risk aversion12:

Lm = E|π|ξ + λy E|y|ξ + λ∆r E|∆r|ξ, ξ > 0. (6)

The degree to which a policy maker dislikes deviations from target depends on ξ, a measure
of risk aversion to upside and downside risks. With respect to deviations from target, ξ
close to zero implies a mild degree of risk-aversion. Standard quadratic loss is nested by
the case ξ = 2. Appendix D motivates these preferences more thoroughly. We consider
the following choices for the new preference parameter, ξ = 1, 2, 5 and 10 and report the
results for Minimax policy under these preferences focusing on a flexible inflation targeter
(λy = 1) in Table 10.

Table 10: Minimax Policy – Non-Quadratic Preferences

Optimal Rule Inflation (Variability) Premium

ξ ρ α β CW-F CW-T SW AW

1 0.8 0.6 0.7 0 .11 .22 .69

2 0.8 0.7 0.8 0 .13 .20 .77

5 0.7 1.1 1.0 .03 .17 .19 .79

10 0.6 1.4 1.2 .05 .20 .19 .77

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative
to first-best simple rule for each model (in percentage points). Shown is the case
λ∆r = 0.5, λy = 1 for loss function (6).

We find that Minimax policy results in less interest-rate smoothing (i.e. ρ falls) and
greater responsiveness to current output and inflation (α and β rise) as risk aversion

12 With regard to non-quadratic central bank objectives see Orphanides and Wieland (2000) and recent
work by Kilian and Manganelli (2003) on the central bank as risk manager.



increases. Implied Inflation Premia remain similar for alternative preferences (cp. Table
10). Thus, the cost of insuring against worst case outcomes does not seem to change much
with the degree of risk aversion.

The implied priors in Table 11 reveal that the AW model receives more and more
weight with greater risk aversion, while the weight on the CW-F model decreases. The

Table 11: Non-Quadratic Preferences - Implied Priors

ξ CW-F CW-T SW AW
1 1.000 0.0 0.0 0.000

2 0.961 0.0 0.0 0.039

5 0.870 0.0 0.0 0.130

10 0.782 0.0 0.0 0.218

Bayesian priors backing the flat minimax solution for vary-
ing degrees of risk-aversion. Shown is the case λ∆r =
0.5, λy = 1 for loss function (6).

reason was mentioned earlier: while CW-F exhibits greater inflation variability than AW,
AW exhibits greater output variability than CW-F. Recall the comparison under the best
simple rule for CW-F which generated standard deviations of inflation of 1.6 percentage
points in CW-F and 0.9 percentage points in AW, but standard deviations of output of 1.4
and 2.0 percentage points in CW-F and AW, respectively. Under quadratic preferences
these differences roughly balance so full insurance policy is close to the rule optimized for
CW-F. As preferences turn more risk averse, however, the variability of the output gap in
the AW that is larger than inflation variability in CW-F receives relatively more weight.
Thus, Minimax policy is driven more towards the features that are optimal for the AW
model.

5 Conclusions

Considering four alternative models of the Euro area, all of which are used for policy-
analysis at the ECB, we have found that maximal insurance against model uncertainty
via Minimax policy comes at moderate costs in terms of lower expected performance.
However, the implied priors that would rationalize the Minimax policy from a Bayesian
perspective indicate that Minimax-type insurance is strongly oriented towards the model
with highest baseline losses. Furthermore, this policy is not as tolerant towards small
perturbations of policy parameters as the Bayesian policy rule. Consequently, we propose
to strike a compromise and use so-called ambiguity-averse preferences for policy design.
These preferences allow the specification of priors but also give extra weight to the worst
uncertain outcomes in a given context. The implied priors and the Implied Inflation
Variability Premia that we have computed are intended to help policy makers in refining
their views on alternative reference models and in reconsidering their desired degree of
insurance. For practical application, an iterative procedure using implied priors and



calculating costs of alternative degrees of insurance should be a useful tool for policy
design.

The uncertainty we have considered by means of the linearized benchmark models
concerned the dynamics around a given steady state. For future research, it would be
interesting to also consider uncertainty about the steady state itself. Most dominantly
this will mean including uncertainty with regard to such variables as the natural rates of
interest and unemployment, and the level of potential output.
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A Detailed Model Description

A.1 The Coenen and Wieland Models

Coenen and Wieland (2005) develop a small-scale monetary macro-model for various

staggered pricing schemes. In this study, we utilize the two variants of the model which

fit the data best. One variant employs the nominal contract specification of Taylor (1980)

(CW-T) while the other employs the relative real wage contract specification of Fuhrer

and Moore (1995) (CW-F). These two contract wage equations imply different degrees

of inflation persistence – real wage contracts give more weight to past inflation. The

model has been estimated on data from the Area Wide Model data set from 1974:1-

1998:4. The contract wage specifications have been estimated by a limited information

indirect inference technique while the IS equation has been estimated by means of the

Generalized Method of Moments. Applications of the models include a robustness analysis

by Coenen (2003), which highlights that under model uncertainty policy makers should

overemphasize inflation persistence.

A.2 The Smets and Wouters Model

The Smets and Wouters (2003) model (SW) is a micro-founded dynamic general equilib-

rium model. It models both sticky prices and sticky wages by Calvo (1983) price setting

combined with partial indexation of prices and wages. The model has been estimated on

synthetic euro area wide data from the AW data set from 1980:2 to 1999:4 by Bayesian

estimation techniques. Apart from private consumption as a demand component, the SW

model also features investment demand. Applications of the model include a study con-

cerning uncertainty about the values of the various persistence parameters of the model

(Angeloni et al., 2003). The main finding is that varying the degree of persistence in

output does not matter as much as does variation in the degree of inflation persistence.

A policy maker is well advised to overemphasize inflation persistence rather than to un-

derstate it. This finding therefore squares with Coenen (2003).

A.3 The Area Wide Model

The SW and CW models treat the Euro area as a closed economy. In contrast, the area

wide model by Fagan et al. (2001) is a small open economy model of Euro land. Its

structure is traditional, having a long-run classical equilibrium with a vertical Phillips

curve but with some non-microfounded short-run frictions in price and wage setting as

well as factor demands. Consequently, activity is demand-determined in the short run

but supply determined in the longer run with employment having converged to a level

consistent with the exogenously given level of equilibrium unemployment. Stock-flow



adjustments are accounted for by, e.g., the inclusion of a wealth term in consumption. At

present, the treatment of expectations in the model is limited; with the exception of the

exchange rate (modelled by forward-looking uncovered interest parity) and the (12-year

bond) term structure, the model embodies backward-looking expectations. Full model

listing and simulation evidence can be found in Fagan et al. (2001) and Dieppe and Henry

(2003) as well as Dieppe et al. (2004). On the balanced growth path, exogenous forces as

there are population growth, trend-factor productivity growth and foreign GDP growth as

well as government consumption drive the endogenous real variables. Aggregate demand

is determined by private consumption, government consumption, investment, variation of

inventories, exports and imports. On the nominal side, the AW models the wage rate

and six deflators (GDP at factor cost deflator, GDP at market price deflator, private

consumption deflator, import and export deflators as well as an investment deflator).

The model has been estimated equation by equation.

Table 12 summarizes the previous discussion.

Table 12: Basic Characteristics of the Four Macro-models

CW-T CW-F SW AW

IS Components 1 1 2 6

Price Variables 21 21 3 6

Labor Variables 0 0 1 1

Estimation Period 1974:1-1998:4 1974:1-1998:4 1980:2-1999:4 1970:1-1997:42

Residual Filtering Period 1979:2-1998:4 1979:2-1998:4 1992:3 to 2000:4
1 This includes the aggregate price level and the nominal contract wage. 2The behavioral equations of
the AW are estimated on a single equation basis. Depending on the equation, the estimation period may
start later (but not later than 1980:1).



B The Minimax Algorithm

We employ the discrete minimax algorithm as implemented in Matlab 6.1 as fminimax.

The algorithm is based on Brayton et al. (1979). We briefly introduce the idea behind

the algorithm.

Quasi-Newton methods solve constraint optimization problems stepwise, finding the opti-

mal step s∆k starting from a point xk. To illustrate this, consider the equality constrained

problem

min
x

f(x), s.t. g(x) = 0. (7)

Let L(x,λ) be the corresponding Lagrangian. The Kuhn-Tucker conditions state that

there exists a non-negative vector λ∗ such that at the optimum point (x∗,λ∗) the con-

straints are met and

h(x∗,λ∗) :=
∂f

∂x
|x∗ +

∂g′

∂x
|x∗λ∗ = 0.

Expanding around xk := x∗ − ∆k, where ∆k is ’small’,





0 = h(x∗,λ∗) ≃ h(xk,λ

∗) + fxx|xk
∆k +

∑
λ∗

i gixx|xk
∆k

0 = g(x∗) ≃ g(xk) + ∂g

∂x′
|xk

∆k.
(8)

System (8) is the same system of equations as the first order conditions derived by solving

the following quadratic subproblem (QSP), provided ∆k is small enough so λ
qsp
k ≃ λ∗,

where λqsp are the multipliers of the QSP

min∆k

1
2
∆′

kH∆k + ∂f
∂x′

|xk
∆k

s.t. g(xk) + ∂g

∂x′
|xk

∆k = 0,

where H := Lxx|xk,λ∗ .

(9)

An optimum is found by a sequence of updates xk+1 = xk + s∆k, and λk+1 = (1− s)λk +

sλqsp
k . Stepsize s is determined on the basis of a problem-specific merit function.

The minimax problem

min
x

max
j

fj(x), s.t. g(x) ≤ 0, (10)

where some of the constraints in g(·) may be strict equality constraints, can be restated



as a non-linear optimization problem

min
x,γ

γ, s.t. g(x) ≤ 0, and fj(x) ≤ γ ∀j. (11)

Let y := (γ,x′)′, f(y) := γ and stack the constraints fj(x) ≤ γ as b(y) ≤ 0. The

Lagrangian for (11) than reads as L(y,λ) = f(y) + λ′

1g(y) + λ′

2b(y). Analogous to (9),

step ∆
(y)
k is found by solving the quadratic subproblem using active set methods (let b̃

mark the binding constraints).






min
∆

(y)
k

∆
(γ)
k + 1

2
∆

(x)
k

′

Hx∆
(x)
k

s.t. g(yk) + ∂g

∂y′
|yk

∆
(y)
k = 0

b̃(yk) + ∂b̃
∂y′

|yk
∆

(y)
k = 0,

(12)

where Hx := Lxx|xk,λk
. For the minimax problem any second (cross) derivative of L

involving γ is zero. In fminimax, the step-size s in updating yk+1 := yk + s∆
(y)
k has to

lead to an improvement in either of two merit functions. Let E be the set of strict equality

constraints in g. The merit functions evaluated at a guess y(s) = yk + s∆
(y)
k are of the

form

P (y,µ) = Loss(y) +
∑

i∈E

µ1,i|gi(x)| +
∑

i/∈E

µ1,i max(gi(x), 0) +
∑

j

µ2,j max(bj(y), 0),

where we suppress subscript k for convenience. Above, µk = max
[
λ

qsp
k , 1

2
(λqsp

k + µk−1)
]
.

The first merit function, exact for the constrained problem (11), sets Loss(y) = γ, while

the second merit function sets Loss(y) = maxj fj(x), which makes use of to the minimax

problem structure (Brayton et al., 1979). If a step length is found such that either of the

penalty functions signals improvement, y and λ are updated accordingly.

As with all Quasi-Newton optimization methods, convergence may occur only to a lo-

cal minimum. We entertain several starting values to safeguard the results against this

feature.



C Bayesian Priors From Unconstrained Minimax

The aim of this section is to explain how priors p̃i can be found such that

x∗ = arg min
x

max
i

fi(x) = arg min
x

∑

i

p̃ifi(x).

In the form of (11), the first-order conditions to the unconstrained (g ≡ 0) minimax

problem are DyL := ∂L
∂y

=



 1 −
∑

i λi

∂
∑

i
fi(x)λi

∂x



 = 0. Define

D2
yL :=

∂L

∂y∂y′
=



 0 0

0
∂

∑
i
fi(x)λi

∂x∂x′



 .

So for any local minimum of the unconstrained minimax, the first and second-order con-

ditions for a local minimum of the unconstrained Bayesian optimization are also met,

provided one takes λ∗ (from the final step of the QSP for the minimax) as the Bayesian

priors. Priors p̃i = λ∗
i support the minimax allocation, x∗. For the case of intermediate am-

biguity aversion, the problem is minx maxi f̄i(x), where f̄i(x) = (1−e)
∑

i pifi(x)+efi(x).

Substituting for f̄i(·), the first order conditions are

∑

i

λ̄∗

i = 1 and
∑

i

{
(1 − e)pi + eλ̄∗

i

} ∂fi(x)

∂x

∣∣∣∣
x∗

= 0 ∀i.

Priors p̃i := (1 − e)pi + eλ̄∗
i support the ambiguity averse allocation.

D Non-quadratic Preferences

This appendix serves to motivate the use of the non-quadratic preferences (6) and dis-

cusses the effects of those preferences on the relative weighting of models in expected

loss minization. Following Kilian and Manganelli (2003) define downward inflation risk,

i.e. risk of inflation falling short of a lower bound of the inflation target range, π, as

DRξD
(π) = −

∫ π

−∞

(π − π)ξDdF (π), ξD > 0. (13)



Note that dF (π) in our setup is the unconditional (stationary) marginal distribution

function of inflation, which we will treat as Gaussian in our study. Similarly upward

inflation risk is defined by,

URξU
(π) =

∫
∞

π

(π − π)ξU dF (π), β > 0. (14)

In general, the target range need not be symmetric about the mean inflation rate nor do

the parameters ξD and ξU governing the inflation risk aversion of the policy maker need to

be equal. If the probability of inflation falling within the target range is zero, and hence

especially if π = π, a value of ξ = 1 implies risk neutrality.13 Risk-seeking behaviour on

each risk branch is implied by ξ < 1, whereas risk averse behavior follows from ξ > 1.

The academic monetary economics literature conventionally uses ξ = 2. Suppose that a

central banker focuses his decisions only on the risk-measures DR and UR such that a

distribution F is preferred to G iff

U(DRξD
(π, F ), URξU

(π, F )) > U(DRξD
(π,G), URξU

(π,G)).

In general, such a central banker’s preferences need not satisfy the von Neumann-Morgenstern

axioms for expected utility. There is a special case, however, where they do. If the central

banker’s preferences can be expressed as

u(π) =






−(1 − a)(π − π)ξD if π < π

0 if π ≤ π ≤ π

−a(π − π)ξU ifπ > π

then E(u) = (1 − a)DRξD
− aURξU

. For the case in which the central bank is only

concerned with inflation and L(π) = 1
2
I(π < −1)(−1− π)ξD + 1

2
I(π > 1)(π− 1)ξU , Figure

5 illustrates the behaviour of the loss function.

For the sake of expository simplicity, we focus on the case of the same aversion to

downside and upside risk, ξU = ξD = ξ, as we have done throughout the paper. We also

13 For upside- and downside risk considered for themselves.



Figure 5: Loss for Symmetric Zone for Varying ξ
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Figure 5: For varying values of ξ the figure plots the loss function L(π) =
1

2
I(π > 1)(π − 1)ξ + 1

2
I(π < −1)(−1 − π)ξ.

assume a symmetric target range about the steady state of zero. As the figure illustrates,

when ξ = 0, the central-bank exclusively focuses on whether inflation leaves the target

range or not. No further information as, say, with regard to the severity of the violation

of the range is taken into account. For any ξ < 1 the central banker’s main concern is

that he may fail to attain the target. As ξ increases towards unity, the utility function

turns piecewise linear. Abstracting from the target range, the agent would be risk-neutral

with respect to upside and downside inflation risks.14 As ξ increases further, the loss

function outside the target range turns more and more convex, leading the policy maker

to evermore risk averse policy making. In the limit, as ξ → ∞, the policy maker accepts

all realizations of inflation within a range of ±1 around the target range, but is reluctant

to accept any larger deviations from target.15

14 With respect to the entire utility function which is concerned with overall risk, even in the case
ξ = 1, π = π, in which risk neutrality on each branch prevails, the agent is risk averse to the overall
risk of deviations from target.

15 Observe, that there may not exist a policy such that the expected loss remains bounded as ξ → ∞.



In the absence of model-uncertainty, as long as the mean of the inflation process falls

within the target range, due to the symmetry of the normal distribution about the mean,

it is apparent that the best a risk averse policy maker can do if he only implements

a linear policy rule is to curb inflation variation (the standard deviation) as much as

possible. There is no trade-off between upside and downside inflation risk.

Model uncertainty and multiple policy targets provide for an interesting departure.

Policy conclusions will depend on the underlying preferences of the central banker. For

expository purposes, Figure 6 illustrates the relative weights attached in the loss function

to two different Gaussian inflation models both with mean zero. We assume a flat prior

for the two models. Model 1 has a standard deviation of 1 for inflation while model

2’s standard deviation is twice as large. The panel illustrates the relative importance

attached to the more dispersed second model in terms of influence on the Bayesian loss

function, as ξD = ξU increases.

Figure 6: Share of Loss for Symmetric Zone for Varying ξ
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Figure 6: Relative share of losses in a flat Bayesian loss function
LB = 1

2
URModel 1

ξ (π) + 1

2
URModel 2

ξ (π) given to model 2. Model 1 has
a smaller standard deviation of inflation than model 2, σ1 = 1, σ2 = 2.

Even under flat Bayesian priors the risk-measure parameters have an important bear-

ing on the composition of the loss function. For the case that a policy maker is not very

risk-averse, for a tight target range, he is concerned only with the probability that infla-



tion in each of the models will exceed its steady state value, π̄ = 0. By symmetry of the

normal distribution about its mean this probability is equal to 1
2

in both models. Now,

as the weight ξ on deviations rises, the relative weight of model two in the loss function

steadily increases. In the extreme, if ξ > 8 the policy maker bases his decisions virtually

exclusively on the performance of model 2, since this contributes almost the entire losses

in relative terms.



E Standard Deviations and Losses

E.1 Single model policy

Table 13: Standard Deviations and Levels of Losses for Single Reference Models

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Optimal Policy for CW-F

0.5 0.0 1 1.6 1.7 1.5 1.1 1.1 1.4 1.0 0.7 0.8 1.2 0.7 0.5 1.4 3.0 1.1 1.2

2 2.9 1.7 1.5 1.2 1.3 1.4 1.0 0.8 0.7 1.2 0.7 0.6 2.4 3.4 1.2 1.4

5 49.3 1.8 1.4 1.3 7.1 1.4 1.0 0.9 1.4 1.2 0.7 0.6 63.6 3.8 1.3 1.6

10 3.8e4 1.8 1.4 1.3 891.5 1.4 1.0 0.9 36.1 1.2 0.7 0.6 6.6e5 3.9 1.3 1.7

0.5 0.5 1 2.3 1.5 1.6 1.0 1.6 1.2 1.0 0.7 1.2 1.0 0.7 0.6 2.1 2.3 0.9 1.1

2 4.2 1.5 1.6 1.1 2.1 1.2 1.0 0.8 1.2 1.0 0.7 0.6 4.3 2.3 0.9 1.3

5 85.3 1.5 1.5 1.2 17.9 1.2 1.0 1.0 4.5 1.0 0.7 0.7 202.5 2.2 0.9 1.5

10 9.0e4 1.5 1.5 1.3 5.1e3 1.2 1.0 1.1 318.4 0.9 0.7 0.7 1.0e6 2.1 0.9 1.6

0.5 1.0 1 2.8 1.4 1.7 1.0 2.0 1.2 1.0 0.7 1.6 0.9 0.7 0.6 2.8 2.0 0.9 1.2

2 5.2 1.4 1.6 1.1 2.7 1.2 1.0 0.9 1.6 0.9 0.7 0.7 5.8 2.0 0.9 1.4

5 108.2 1.4 1.6 1.3 23.9 1.2 1.0 1.0 5.8 0.9 0.7 0.7 238.8 2.0 0.9 1.5

10 1.1e5 1.5 1.5 1.4 7.0e3 1.2 1.0 1.1 389.2 0.9 0.7 0.8 1.0e6 2.0 0.9 1.6

1.0 0.0 1 2.0 1.6 1.7 0.8 1.2 1.3 1.0 0.5 0.9 1.2 0.7 0.4 1.5 2.5 1.0 0.8

2 3.4 1.7 1.6 1.0 1.4 1.4 1.0 0.6 0.8 1.2 0.7 0.5 2.3 2.8 1.1 1.0

5 58.2 1.7 1.5 1.2 7.5 1.4 1.0 0.8 1.5 1.2 0.7 0.6 49.5 3.3 1.2 1.4

10 4.5e4 1.8 1.4 1.3 932.9 1.4 1.0 0.9 38.1 1.2 0.7 0.6 4.3e5 3.7 1.3 1.6

1.0 0.5 1 2.6 1.5 1.8 0.8 1.7 1.3 1.0 0.5 1.4 1.1 0.7 0.5 2.4 2.3 1.0 0.9

2 4.7 1.5 1.6 0.9 2.2 1.3 1.0 0.7 1.4 1.0 0.7 0.5 4.8 2.3 1.0 1.1

5 92.9 1.5 1.5 1.1 18.7 1.2 1.0 0.9 5.0 1.0 0.7 0.6 233.7 2.3 0.9 1.3

10 9.6e4 1.5 1.5 1.3 5.3e3 1.2 1.0 1.0 372.7 1.0 0.7 0.7 1.2e6 2.2 0.9 1.5

1.0 1.0 1 3.2 1.4 1.8 0.8 2.2 1.2 1.0 0.6 1.8 1.0 0.8 0.5 3.2 2.1 0.9 1.0

2 5.7 1.4 1.7 0.9 2.9 1.2 1.0 0.7 1.8 1.0 0.7 0.6 6.6 2.1 0.9 1.2

5 116.0 1.4 1.6 1.1 25.3 1.2 1.0 0.9 6.6 0.9 0.7 0.7 287.0 2.1 0.9 1.4

10 1.2e5 1.5 1.5 1.3 7.4e3 1.2 1.0 1.0 463.0 0.9 0.7 0.7 1.3e6 2.1 0.9 1.5
Single model standard deviations and losses.



Table 14: Standard Deviations and Levels of Losses for Single Reference Models

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Optimal Policy for CW-T

0.5 0.0 1 8.4 6.9 9.8 1.5 0.9 1.9 1.0 0.2 0.6 1.9 0.7 0.1 1.9 3.8 2.2 0.3

2 7.4 2.7 2.6 1.0 1.0 2.0 0.9 0.3 0.5 1.9 0.7 0.2 ∞ ∞ ∞ ∞

5 167.4 2.5 1.9 1.2 4.6 2.0 0.9 0.6 0.9 1.9 0.6 0.4 ∞ ∞ ∞ ∞

10 6.7e4 2.0 1.5 1.2 636.3 1.6 0.9 0.7 52.5 1.4 0.7 0.5 8.2e8 7.1 2.5 1.9

0.5 0.5 1 2.9 1.5 2.6 0.5 1.5 1.3 1.0 0.3 1.2 1.2 0.8 0.3 1.9 2.2 1.0 0.6

2 8.4 1.2 2.7 0.7 1.9 1.1 1.0 0.5 1.2 1.0 0.8 0.5 3.1 1.9 0.9 1.0

5 594.1 1.1 2.5 0.9 12.7 1.0 1.1 0.8 3.3 0.8 0.8 0.6 62.0 1.7 0.9 1.3

10 2.9e6 1.1 2.2 1.0 2.1e3 1.0 1.0 0.9 120.6 0.8 0.8 0.7 8.9e4 1.7 0.8 1.4

0.5 1.0 1 3.8 1.1 3.2 0.7 1.9 1.1 1.1 0.6 1.5 0.9 0.8 0.5 2.7 2.0 0.9 1.1

2 12.8 1.1 3.4 0.9 2.4 1.0 1.1 0.7 1.5 0.8 0.8 0.6 4.6 1.7 0.9 1.2

5 2.9e3 1.0 3.4 1.0 16.1 1.0 1.1 0.8 4.0 0.8 0.8 0.7 91.2 1.6 0.9 1.4

10 1.6e7 1.0 2.7 1.0 2.6e3 1.0 1.1 0.9 143.0 0.7 0.8 0.7 1.2e5 1.6 0.8 1.5

1.0 0.0 1 ∞ ∞ ∞ ∞ 0.9 2.0 1.0 0.1 0.7 2.0 0.7 0.1 1.6 3.2 1.9 0.2

2 12.4 3.1 3.4 0.9 1.0 1.9 1.0 0.2 0.5 1.9 0.7 0.2 ∞ ∞ ∞ ∞

5 224.0 2.5 2.0 1.1 4.7 2.0 0.9 0.5 0.9 1.8 0.7 0.3 ∞ ∞ ∞ ∞

10 8.2e4 2.0 1.6 1.1 647.2 1.6 0.9 0.7 54.6 1.4 0.7 0.5 1.8e8 6.5 2.3 1.7

1.0 0.5 1 4.0 2.2 3.4 0.6 1.6 1.5 1.0 0.2 1.4 1.4 0.8 0.2 2.1 2.4 1.1 0.4

2 8.7 1.3 2.7 0.6 2.0 1.2 1.0 0.4 1.4 1.1 0.8 0.4 3.5 2.0 0.9 0.8

5 746.8 1.1 2.6 0.8 13.3 1.1 1.1 0.7 3.8 0.9 0.8 0.6 75.2 1.8 0.9 1.2

10 4.0e6 1.1 2.3 0.9 2.2e3 1.0 1.0 0.8 136.5 0.8 0.8 0.7 1.0e5 1.7 0.9 1.4

1.0 1.0 1 3.4 1.4 2.3 0.6 2.1 1.2 1.0 0.4 1.8 1.1 0.8 0.4 3.0 2.1 1.0 0.7

2 11.1 1.2 3.0 0.7 2.6 1.1 1.1 0.6 1.7 0.9 0.8 0.5 5.4 1.9 0.9 1.0

5 3.1e3 1.0 3.4 0.9 17.1 1.0 1.1 0.8 4.7 0.8 0.8 0.6 118.0 1.7 0.9 1.3

10 2.6e7 1.0 2.8 1.0 2.7e3 1.0 1.1 0.9 165.2 0.8 0.8 0.7 1.5e5 1.6 0.9 1.4
Single model standard deviations and losses. The notation “∞” indicates that the implemented rule
results in instability.



Table 15: Standard Deviations and Levels of Losses for Single Reference Models

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Optimal Policy for SW

0.5 0.0 1 ∞ ∞ ∞ ∞ 0.9 2.4 1.1 0.2 0.6 2.5 0.7 0.1 ∞ ∞ ∞ ∞

2 13.1 3.7 3.5 1.4 1.0 2.4 1.0 0.4 0.4 2.5 0.6 0.2 ∞ ∞ ∞ ∞

5 214.5 2.7 2.0 1.5 4.9 2.2 0.9 0.7 0.8 1.8 0.6 0.4 ∞ ∞ ∞ ∞

10 6.7e4 2.0 1.5 1.4 976.4 1.6 1.0 0.9 30.5 1.2 0.7 0.5 ∞ ∞ ∞ ∞

0.5 0.5 1 2.8 1.3 2.4 0.9 1.6 1.2 1.1 0.8 1.1 0.8 0.8 0.5 4.5 5.2 1.5 3.2

2 6.9 1.2 2.4 1.1 2.2 1.1 1.1 0.9 1.0 0.7 0.8 0.6 10.1 3.3 1.1 2.7

5 320.0 1.2 2.2 1.2 17.9 1.1 1.1 1.0 2.6 0.7 0.8 0.7 1.5e3 3.1 1.0 2.8

10 9.4e5 1.3 2.0 1.3 4.0e3 1.1 1.1 1.1 83.4 0.7 0.8 0.7 5.5e7 3.1 1.0 2.9

0.5 1.0 1 4.1 1.0 3.2 1.8 2.3 1.0 1.1 1.7 1.4 0.5 0.8 0.9 3.5 1.9 0.9 3.3

2 10.5 1.1 2.9 1.4 3.1 1.0 1.1 1.3 1.3 0.6 0.8 0.8 10.7 2.4 0.9 2.9

5 627.4 1.1 2.5 1.3 24.4 1.1 1.1 1.1 3.0 0.7 0.8 0.7 1.4e3 2.7 0.9 2.8

10 2.0e6 1.2 2.2 1.3 5.4e3 1.1 1.1 1.1 95.3 0.7 0.8 0.7 5.0e7 2.8 0.9 2.9

1.0 0.0 1 ∞ ∞ ∞ ∞ 1.0 2.6 1.2 0.1 0.6 2.7 0.7 0.0 ∞ ∞ ∞ ∞

2 28.3 4.6 5.1 1.4 1.1 2.4 1.0 0.3 0.5 2.4 0.6 0.2 ∞ ∞ ∞ ∞

5 310.4 2.8 2.1 1.4 5.0 2.2 0.9 0.6 0.9 1.9 0.6 0.4 ∞ ∞ ∞ ∞

10 8.3e4 2.0 1.5 1.4 977.2 1.6 1.0 0.9 31.4 1.2 0.7 0.5 ∞ ∞ ∞ ∞

1.0 0.5 1 3.5 2.0 2.7 0.7 1.7 1.5 1.1 0.4 1.3 1.2 0.8 0.3 5.8 6.5 2.5 1.6

2 7.6 1.4 2.4 0.9 2.4 1.2 1.1 0.7 1.2 0.9 0.8 0.5 117.9 11.7 3.1 6.3

5 426.6 1.3 2.3 1.1 19.3 1.1 1.1 0.9 2.9 0.7 0.8 0.6 2.7e3 3.5 1.1 2.8

10 1.4e6 1.3 2.1 1.2 4.2e3 1.1 1.1 1.0 90.9 0.7 0.8 0.6 8.4e7 3.2 1.0 2.8

1.0 1.0 1 4.2 1.3 2.9 1.0 2.4 1.2 1.1 0.8 1.7 0.8 0.8 0.5 6.2 3.9 1.2 2.6

2 11.2 1.2 2.9 1.1 3.3 1.1 1.1 0.9 1.5 0.7 0.8 0.6 16.8 3.0 1.0 2.5

5 810.2 1.2 2.6 1.2 26.6 1.1 1.1 1.0 3.5 0.7 0.8 0.6 2.0e3 2.9 1.0 2.6

10 3.2e6 1.2 2.3 1.2 5.8e3 1.1 1.1 1.1 105.3 0.7 0.8 0.7 6.9e7 2.9 1.0 2.8
Single model standard deviations and losses. The notation “∞” indicates that the implemented rule
results in instability.



Table 16: Standard Deviations and Levels of Losses for Single Reference Models

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Optimal Policy for AW

0.5 0.0 1 2.2 1.6 2.4 0.7 1.0 1.4 1.0 0.4 0.8 1.4 0.8 0.4 1.0 2.0 1.0 0.5

2 5.1 1.5 2.2 0.7 1.2 1.3 1.0 0.5 0.8 1.3 0.8 0.5 1.1 1.9 0.9 0.6

5 263.5 1.4 2.1 0.8 7.6 1.3 1.0 0.7 2.3 1.2 0.8 0.6 4.5 1.7 0.9 0.8

10 7.3e6 1.3 2.4 0.8 1.3e3 1.2 1.0 0.7 120.5 1.2 0.8 0.7 475.6 1.6 0.9 0.8

0.5 0.5 1 3.0 1.3 2.7 0.9 1.6 1.2 1.0 0.8 1.4 1.1 0.8 0.8 1.7 1.6 0.9 0.9

2 11.1 1.2 3.1 1.0 2.1 1.2 1.0 0.9 1.6 1.1 0.8 0.8 2.4 1.5 0.9 1.1

5 ME ME ME ME ME ME ME ME 7.1 1.0 0.8 0.9 27.9 1.4 0.8 1.2

10 ME ME ME ME ME ME ME ME ME ME ME ME 1.5e4 1.4 0.8 1.3

0.5 1.0 1 4.1 1.1 3.5 1.3 2.2 1.0 1.1 1.2 1.7 0.8 0.8 1.0 2.3 1.3 0.8 1.5

2 ME ME ME ME ME ME ME ME 1.9 0.9 0.8 1.0 3.4 1.3 0.8 1.4

5 ME ME ME ME ME ME ME ME 9.0 0.9 0.8 1.0 42.7 1.3 0.8 1.3

10 ME ME ME ME ME ME ME ME ME ME ME ME 2.4e4 1.3 0.8 1.3

1.0 0.0 1 2.9 2.0 3.0 0.6 1.0 1.6 1.0 0.3 0.9 1.6 0.8 0.3 1.2 2.2 1.1 0.3

2 6.2 1.6 2.4 0.7 1.2 1.4 1.0 0.4 0.8 1.4 0.8 0.4 1.2 2.0 1.0 0.5

5 317.1 1.4 2.2 0.8 7.6 1.3 1.0 0.6 2.3 1.3 0.8 0.6 5.1 1.8 0.9 0.7

10 1.0e7 1.4 2.5 0.8 1.3e3 1.3 1.0 0.7 136.6 1.2 0.8 0.7 547.6 1.7 0.9 0.8

1.0 0.5 1 3.7 1.6 3.1 0.7 1.8 1.4 1.0 0.5 1.6 1.4 0.8 0.5 2.0 1.9 1.0 0.5

2 12.6 1.4 3.3 0.8 2.3 1.3 1.0 0.7 1.9 1.2 0.8 0.7 2.8 1.7 0.9 0.8

5 ME ME ME ME ME ME ME ME 9.1 1.1 0.8 0.8 34.1 1.5 0.9 1.1

10 ME ME ME ME ME ME ME ME ME ME ME ME 1.9e4 1.4 0.9 1.2

1.0 1.0 1 ME ME ME ME ME ME ME ME 2.2 1.2 0.8 0.7 2.7 1.7 0.9 0.8

2 ME ME ME ME ME ME ME ME 2.5 1.1 0.8 0.8 4.0 1.5 0.9 1.0

5 ME ME ME ME ME ME ME ME ME ME ME ME 52.9 1.4 0.9 1.2

10 ME ME ME ME ME ME ME ME ME ME ME ME 3.1e4 1.4 0.9 1.3
Single model standard deviations and losses. The notation “ME” indicates that the implemented rule
results in multiple equilibria.



E.2 Flat Bayesian Priors

Table 17: Standard Deviations and Levels of Losses

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r LB

Flat Bayesian priors

0.5 0.0 1 1.7 1.7 1.8 0.8 1.0 1.4 1.0 0.5 0.7 1.3 0.7 0.4 1.1 2.3 1.0 0.6 1.1

2 3.1 1.7 1.6 0.9 1.2 1.4 1.0 0.6 0.7 1.3 0.7 0.5 1.3 2.3 1.0 0.8 1.5

5 53.7 1.7 1.5 1.2 7.0 1.4 1.0 0.9 1.5 1.2 0.7 0.6 10.7 2.5 1.0 1.0 18.2

10 4.6e4 1.7 1.5 1.3 1.1e3 1.4 1.0 1.0 49.0 1.2 0.7 0.7 7.3e3 2.3 1.0 1.2 1.3e4

0.5 0.5 1 2.3 1.4 1.8 0.8 1.5 1.2 1.0 0.6 1.2 1.1 0.8 0.5 1.8 1.9 0.9 0.9 1.7

2 4.5 1.4 1.7 1.0 2.0 1.2 1.0 0.8 1.3 1.0 0.8 0.7 2.9 1.8 0.9 1.1 2.7

5 102.8 1.4 1.6 1.3 18.7 1.2 1.0 1.1 5.2 1.0 0.7 0.8 52.5 1.7 0.8 1.3 44.8

10 1.3e5 1.4 1.6 1.4 8.1e3 1.2 1.0 1.3 491.4 0.9 0.7 0.9 6.7e4 1.6 0.8 1.4 5.2e4

0.5 1.0 1 2.9 1.2 2.0 1.0 2.0 1.1 1.0 0.9 1.6 0.9 0.8 0.7 2.5 1.6 0.8 1.3 2.2

2 5.6 1.2 1.8 1.1 2.7 1.1 1.0 1.0 1.6 0.9 0.8 0.8 4.0 1.6 0.8 1.3 3.5

5 129.0 1.3 1.7 1.3 25.6 1.1 1.0 1.2 6.9 0.9 0.8 0.9 73.0 1.5 0.8 1.4 58.6

10 1.6e5 1.4 1.6 1.5 1.1e4 1.1 1.0 1.3 692.0 0.9 0.7 0.9 8.9e4 1.5 0.8 1.4 6.7e4

1.0 0.0 1 2.1 1.8 2.0 0.7 1.1 1.4 1.0 0.4 0.9 1.4 0.7 0.3 1.2 2.3 1.1 0.5 1.3

2 3.6 1.7 1.7 0.8 1.2 1.4 1.0 0.5 0.7 1.3 0.7 0.4 1.5 2.3 1.0 0.7 1.8

5 62.9 1.7 1.5 1.1 7.2 1.4 1.0 0.8 1.6 1.2 0.7 0.6 11.7 2.4 1.0 0.9 20.8

10 5.3e4 1.7 1.5 1.3 1.1e3 1.4 1.0 0.9 51.9 1.2 0.7 0.6 8.0e3 2.4 1.0 1.1 1.5e4

1.0 0.5 1 2.7 1.5 2.0 0.6 1.7 1.3 1.0 0.4 1.4 1.2 0.8 0.4 2.1 2.1 1.0 0.6 2.0

2 4.9 1.4 1.8 0.8 2.2 1.2 1.0 0.6 1.5 1.1 0.8 0.5 3.4 1.9 0.9 0.9 3.0

5 112.7 1.4 1.7 1.2 19.8 1.2 1.0 1.0 6.2 1.0 0.8 0.8 61.8 1.7 0.8 1.2 50.1

10 1.4e5 1.4 1.6 1.4 8.6e3 1.2 1.0 1.2 604.8 1.0 0.7 0.9 7.8e4 1.6 0.8 1.3 5.8e4

1.0 1.0 1 3.3 1.3 2.0 0.7 2.2 1.2 1.0 0.5 1.9 1.1 0.8 0.5 2.9 1.9 0.9 0.8 2.6

2 6.1 1.3 1.9 0.9 2.9 1.1 1.0 0.7 1.9 1.0 0.8 0.6 4.8 1.7 0.9 1.1 3.9

5 140.0 1.3 1.7 1.2 27.3 1.1 1.0 1.0 8.4 0.9 0.8 0.8 87.9 1.6 0.8 1.3 65.9

10 1.8e5 1.4 1.6 1.4 1.2e4 1.2 1.0 1.2 866.6 0.9 0.8 0.9 1.0e5 1.6 0.8 1.4 7.5e4
Standard deviations and losses for flat Bayesian priors. Final column: expected loss.



E.3 Minimax and Ambiguity Averse

Table 18: Standard Deviations and Levels of Losses

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Minimax

0.5 0.0 1 1.6 1.7 1.5 1.1 1.1 1.4 1.0 0.7 0.8 1.2 0.7 0.5 1.4 3.0 1.1 1.2

2 2.9 1.7 1.5 1.2 1.3 1.4 1.0 0.8 0.7 1.2 0.7 0.6 2.4 3.4 1.2 1.4

5 49.3 1.8 1.4 1.3 7.1 1.4 1.0 0.9 1.4 1.2 0.7 0.6 49.3 3.6 1.2 1.5

10 4.0e4 1.7 1.4 1.3 1.0e3 1.4 1.0 1.0 40.9 1.2 0.7 0.6 4.0e4 2.8 1.1 1.3

0.5 0.5 1 2.3 1.5 1.6 1.0 1.6 1.2 1.0 0.7 1.2 1.0 0.7 0.6 2.1 2.3 0.9 1.1

2 4.2 1.5 1.6 1.1 2.1 1.2 1.0 0.8 1.2 1.0 0.7 0.6 4.2 2.2 0.9 1.3

5 89.0 1.5 1.5 1.3 18.6 1.2 1.0 1.0 5.0 1.0 0.7 0.8 89.0 1.9 0.9 1.3

10 1.1e5 1.4 1.6 1.4 7.1e3 1.2 1.0 1.2 438.8 1.0 0.7 0.9 1.1e5 1.7 0.8 1.4

0.5 1.0 1 2.8 1.4 1.7 1.0 2.0 1.2 1.0 0.7 1.6 0.9 0.7 0.6 2.8 2.0 0.9 1.2

2 5.2 1.4 1.6 1.1 2.7 1.2 1.0 0.9 1.6 0.9 0.7 0.7 5.2 1.9 0.9 1.3

5 113.0 1.4 1.6 1.3 25.3 1.2 1.0 1.1 6.6 0.9 0.7 0.8 113.0 1.7 0.8 1.4

10 1.4e5 1.4 1.6 1.5 1.0e4 1.2 1.0 1.3 604.2 0.9 0.7 0.9 1.4e5 1.6 0.8 1.4

1.0 0.0 1 2.0 1.6 1.7 0.8 1.2 1.3 1.0 0.5 0.9 1.2 0.7 0.4 1.5 2.5 1.0 0.8

2 3.4 1.7 1.6 1.0 1.4 1.4 1.0 0.6 0.8 1.2 0.7 0.5 2.3 2.8 1.1 1.0

5 58.2 1.7 1.5 1.2 7.5 1.4 1.0 0.8 1.5 1.2 0.7 0.6 49.5 3.3 1.2 1.4

10 4.6e4 1.7 1.4 1.3 1.0e3 1.4 1.0 0.9 42.6 1.2 0.7 0.6 4.6e4 2.8 1.1 1.3

1.0 0.5 1 2.6 1.5 1.8 0.8 1.7 1.3 1.0 0.5 1.4 1.1 0.7 0.5 2.4 2.3 1.0 0.9

2 4.7 1.5 1.6 0.9 2.2 1.3 1.0 0.7 1.4 1.0 0.7 0.5 4.7 2.3 0.9 1.1

5 97.9 1.5 1.6 1.2 19.6 1.2 1.0 0.9 5.8 1.0 0.7 0.7 97.9 1.9 0.9 1.2

10 1.2e5 1.4 1.6 1.4 7.6e3 1.2 1.0 1.2 533.9 1.0 0.7 0.8 1.2e5 1.7 0.8 1.3

1.0 1.0 1 3.2 1.4 1.8 0.8 2.2 1.2 1.0 0.6 1.8 1.0 0.8 0.5 3.2 2.1 0.9 1.0

2 5.7 1.4 1.7 0.9 2.9 1.2 1.0 0.7 1.9 1.0 0.7 0.6 5.7 1.9 0.9 1.1

5 123.6 1.4 1.6 1.2 27.3 1.2 1.0 1.0 8.0 0.9 0.7 0.8 123.6 1.7 0.8 1.3

10 1.5e5 1.4 1.6 1.4 1.1e4 1.2 1.0 1.2 759.9 0.9 0.7 0.9 1.5e5 1.6 0.8 1.4
Standard deviations and losses for minimax policy.



Table 19: Standard Deviations and Levels of Losses

CW-F CW-T SW AW

λ∆r λy ξ Lm y π ∆r Lm y π ∆r Lm y π ∆r Lm y π ∆r

Ambiguity Averse CW-T

0.5 0.0 1 1.7 1.7 1.6 0.9 1.0 1.4 1.0 0.5 0.7 1.2 0.7 0.4 1.3 2.9 1.2 0.9

2 2.9 1.8 1.5 1.1 1.2 1.4 1.0 0.7 0.6 1.2 0.7 0.5 2.3 3.4 1.2 1.2

5 49.5 1.8 1.4 1.3 6.8 1.4 1.0 0.9 1.3 1.2 0.7 0.6 49.5 3.7 1.3 1.5

10 4.0e4 1.7 1.4 1.3 989.4 1.4 1.0 1.0 40.8 1.2 0.7 0.6 4.0e4 2.8 1.1 1.3

0.5 0.5 1 2.3 1.5 1.7 0.8 1.5 1.2 1.0 0.6 1.2 1.1 0.7 0.5 2.1 2.3 1.0 1.0

2 4.2 1.5 1.6 1.0 2.0 1.2 1.0 0.7 1.2 1.0 0.7 0.6 4.2 2.3 0.9 1.2

5 89.5 1.5 1.6 1.2 17.4 1.2 1.0 1.0 4.7 1.0 0.7 0.7 89.5 1.9 0.9 1.3

10 1.1e5 1.4 1.6 1.4 6.4e3 1.2 1.0 1.2 411.3 0.9 0.7 0.8 1.1e5 1.7 0.8 1.4

0.5 1.0 1 2.9 1.3 1.8 0.9 2.0 1.1 1.0 0.7 1.6 0.9 0.8 0.6 2.8 2.0 0.9 1.2

2 5.3 1.3 1.7 1.0 2.6 1.1 1.0 0.8 1.6 0.9 0.7 0.6 5.3 1.9 0.9 1.3

5 113.9 1.4 1.6 1.3 23.4 1.1 1.0 1.1 6.1 0.9 0.7 0.8 113.9 1.7 0.8 1.4

10 1.4e5 1.4 1.6 1.4 9.0e3 1.2 1.0 1.2 558.9 0.9 0.7 0.9 1.4e5 1.6 0.8 1.4

Standard deviations and losses for ambiguity averse CW-T policy. Parameters: e = 0.5, pCW−T ≈ 1,

pm ≈ 0 for all other models.



F Relative Performance

F.1 Single Models

Table 20: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium

λ∆r λy ξ ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

Optimal CW-F policy

0.5 0.0 1 0.9 0.7 0.4 0 23 35 39 0 .25 .25 .49

2 0.9 0.8 0.4 0 31 53 126 0 .15 .16 .56

5 0.9 0.9 0.5 0 54 61 1321 0 .09 .08 .69

10 0.9 0.9 0.5 0 40 18 1.4e5 0 .04 .01 1.05

0.5 0.5 1 0.8 0.6 0.5 0 7 6 25 0 .13 .09 .54

2 0.8 0.7 0.6 0 12 17 82 0 .10 .11 .79

5 0.8 0.9 0.7 0 41 73 627 0 .11 .13 1.10

10 0.8 1.0 0.8 0 138 282 6392 0 .12 .13 1.16

0.5 1.0 1 0.8 0.5 0.7 0 4 13 25 0 .11 .22 .70

2 0.8 0.7 0.8 0 12 27 71 0 .13 .19 .93

5 0.8 0.9 0.9 0 49 90 459 0 .15 .16 1.15

10 0.8 1.0 0.9 0 167 309 4020 0 .15 .14 1.16

1.0 0.0 1 0.9 0.4 0.4 0 32 54 30 0 .37 .40 .43

2 0.9 0.6 0.4 0 37 67 87 0 .17 .20 .44

5 0.9 0.8 0.4 0 58 72 875 0 .10 .09 .59

10 0.9 0.9 0.5 0 44 22 7.9e4 0 .04 .02 .96

1.0 0.5 1 0.9 0.4 0.4 0 10 7 22 0 .20 .12 .53

2 0.8 0.5 0.5 0 12 15 69 0 .11 .11 .76

5 0.8 0.8 0.7 0 40 74 586 0 .11 .14 1.14

10 0.8 0.9 0.8 0 142 310 6480 0 .13 .14 1.20

1.0 1.0 1 0.8 0.4 0.5 0 5 8 20 0 .12 .17 .67

2 0.8 0.5 0.6 0 11 22 63 0 .13 .19 .95

5 0.8 0.8 0.8 0 48 91 443 0 .15 .18 1.21

10 0.8 0.9 0.9 0 170 340 4106 0 .15 .16 1.21
Percentage losses relative to first-best simple rule in %. Implied Inflation (Variability) Premium in
percentage points.



Table 21: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium

λ∆r λy ξ ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

Optimal CW-T policy

0.5 0.0 1 1.0 0.1 0.0 414 0 7 91 8.51 0 .05 1.13

2 1.0 0.3 0.1 161 0 9 ∞ 1.13 0 .03 ∞

5 0.9 0.6 0.1 240 0 4 ∞ .47 0 .01 ∞

10 0.9 0.7 0.3 75 0 72 1.7e8 .10 0 .05 3.38

0.5 0.5 1 0.9 0.1 0.3 28 0 8 11 .79 0 .12 .24

2 0.8 0.2 0.6 103 0 15 29 1.03 0 .09 .34

5 0.8 0.3 0.8 596 0 27 122 .94 0 .06 .57

10 0.8 0.4 1.0 3131 0 45 470 .74 0 .04 .70

0.5 1.0 1 0.9 0.1 0.6 33 0 10 21 1.19 0 .18 .58

2 0.8 0.2 0.8 145 0 18 36 1.57 0 .13 .55

5 0.8 0.2 1.0 2627 0 32 114 1.85 0 .07 .68

10 0.8 0.3 1.0 1.4e4 0 50 389 1.13 0 .04 .75

1.0 0.0 1 1.0 0.1 0.0 ∞ 0 10 41 ∞ 0 .07 .60

2 1.0 0.2 0.1 262 0 10 ∞ 1.81 0 .04 ∞

5 0.9 0.5 0.1 285 0 5 ∞ .54 0 .01 ∞

10 0.9 0.7 0.3 83 0 74 3.3e7 .11 0 .05 2.53

1.0 0.5 1 0.9 0.1 0.2 54 0 6 9 1.76 0 .09 .23

2 0.8 0.2 0.4 87 0 15 24 .96 0 .11 .32

5 0.8 0.2 0.7 704 0 30 121 1.03 0 .07 .61

10 0.8 0.3 0.9 4038 0 50 451 .80 0 .04 .72

1.0 1.0 1 0.9 0.2 0.4 7 0 10 12 .29 0 .21 .39

2 0.8 0.2 0.6 95 0 17 34 1.18 0 .15 .59

5 0.8 0.2 0.8 2590 0 35 123 1.86 0 .08 .75

10 0.8 0.3 1.0 2.1e4 0 57 382 1.26 0 .05 .77
Percentage losses relative to first-best simple rule in %. Implied Inflation (Variability) Premium in
percentage points. The notation “∞” indicates that the implemented rule results in instability.



Table 22: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium

λ∆r λy ξ ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

Optimal SW policy

0.5 0.0 1 1.0 0.1 0.0 ∞ 6 0 ∞ ∞ .06 0 ∞

2 1.0 0.4 0.0 360 8 0 ∞ 2.06 .04 0 ∞

5 1.0 0.6 0.1 335 6 0 ∞ .57 .01 0 ∞

10 1.0 0.8 0.5 74 53 0 ∞ .10 .05 0 ∞

0.5 0.5 1 1.0 0.2 0.7 22 11 0 168 .64 .21 0 3.56

2 1.0 0.2 0.8 66 19 0 324 .72 .16 0 2.06

5 1.0 0.3 0.9 275 40 0 5439 .63 .11 0 2.14

10 1.0 0.4 1.0 947 87 0 3.5e5 .50 .09 0 2.15

0.5 1.0 1 1.0 0.2 1.7 44 19 0 57 1.58 .46 0 1.61

2 1.0 0.2 1.3 101 26 0 220 1.18 .27 0 2.01

5 1.0 0.2 1.1 480 52 0 3223 .91 .15 0 2.09

10 1.0 0.4 1.0 1666 108 0 2.0e5 .63 .11 0 2.13

1.0 0.0 1 1.0 0.1 0.0 ∞ 10 0 ∞ ∞ .11 0 ∞

2 1.0 0.3 0.0 728 8 0 ∞ 3.65 .04 0 ∞

5 1.0 0.6 0.1 433 6 0 ∞ .68 .01 0 ∞

10 1.0 0.7 0.4 83 51 0 ∞ .11 .05 0 ∞

1.0 0.5 1 1.0 0.1 0.2 34 10 0 196 1.11 .20 0 4.84

2 1.0 0.2 0.6 63 20 0 4085 .73 .18 0 9.87

5 1.0 0.2 0.8 359 45 0 8011 .74 .12 0 2.50

10 1.0 0.4 0.9 1351 90 0 4.3e5 .57 .09 0 2.29

1.0 1.0 1 1.0 0.1 0.7 30 15 0 130 1.21 .40 0 4.37

2 1.0 0.1 0.8 95 27 0 314 1.19 .30 0 2.81

5 1.0 0.2 0.9 599 56 0 3760 1.02 .17 0 2.30

10 1.0 0.3 1.0 2524 112 0 2.2e5 .72 .12 0 2.23
Percentage losses relative to first-best simple rule in %. Implied Inflation (Variability) Premium in
percentage points. The notation “∞” indicates that the implemented rule results in instability.



Table 23: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium

λ∆r λy ξ ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

Optimal AW policy

0.5 0.0 1 0.7 0.4 0.4 31 15 40 0 .65 .16 .29 0

2 0.6 0.5 0.5 78 24 78 0 .63 .12 .23 0

5 0.6 0.7 0.7 434 66 171 0 .66 .11 .16 0

10 0.5 0.6 0.9 1.8e4 111 295 0 1.04 .09 .12 0

0.5 0.5 1 0.5 0.6 1.0 32 10 22 0 .91 .19 .32 0

2 0.4 0.6 1.3 167 15 49 0 1.50 .12 .28 0

5 0.4 0.4 1.5 ME ME 173 0 ME ME .23 0

10 0.4 0.3 1.6 ME ME ME 0 ME ME ME 0

0.5 1.0 1 0.4 0.6 1.9 46 11 24 0 1.63 .28 .42 0

2 0.4 0.5 1.7 ME ME 54 0 ME ME .36 0

5 0.4 0.4 1.7 ME ME 197 0 ME ME .27 0

10 0.4 0.3 1.7 ME ME ME 0 ME ME ME 0

1.0 0.0 1 0.8 0.2 0.2 45 15 45 0 1.14 .17 .34 0

2 0.7 0.4 0.4 80 22 81 0 .71 .11 .24 0

5 0.6 0.6 0.6 445 60 171 0 .69 .10 .17 0

10 0.5 0.6 0.8 2.2e4 111 335 0 1.09 .09 .13 0

1.0 0.5 1 0.6 0.4 0.5 41 12 25 0 1.33 .23 .41 0

2 0.5 0.5 0.9 170 17 59 0 1.62 .15 .37 0

5 0.4 0.5 1.3 ME ME 215 0 ME ME .28 0

10 0.5 0.3 1.4 ME ME ME 0 ME ME ME 0

1.0 1.0 1 0.5 0.5 0.8 ME ME 30 0 ME ME .64 0

2 0.4 0.5 1.2 ME ME 67 0 ME ME .49 0

5 0.4 0.4 1.5 ME ME ME 0 ME ME ME 0

10 0.4 0.3 1.6 ME ME ME 0 ME ME ME 0
Percentage losses relative to first-best simple rule in %. Implied Inflation (Variability) Premium in
percentage points. The notation “ME” indicates that the implemented rule results in multiple equilibria.



F.2 Flat Bayesian Priors

Table 24: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium
λ∆r λy ξ ρ α β CW-F CW-T SW AW ∆Lworst CW-F CW-T SW AW ∆σπ

Flat Bayesian priors

0.5 0.0 1 0.8 0.4 0.3 6 13 29 7 ∞ .12 .14 .21 .09 ∞
2 0.8 0.6 0.4 7 21 51 22 ∞ .07 .10 .16 .12 ∞
5 0.8 0.9 0.5 9 52 77 140 ∞ .03 .09 .09 .20 ∞
10 0.8 1.1 0.6 21 83 61 1445 ∞ .03 .07 .04 .35 ∞

0.5 0.5 1 0.8 0.5 0.5 3 4 8 9 94 .08 .07 .12 .18 3.38
2 0.7 0.7 0.8 7 9 22 21 149 .09 .08 .14 .26 1.80
5 0.6 1.2 1.0 20 47 102 89 ∞ .09 .12 .16 .49 ∞
10 0.6 1.4 1.2 48 278 489 327 ∞ .09 .18 .17 .64 ∞

0.5 1.0 1 0.7 0.6 1.0 3 4 13 9 41 .11 .10 .23 .25 1.38
2 0.7 0.8 1.1 7 11 29 19 ∞ .11 .12 .21 .32 ∞
5 0.6 1.2 1.2 19 59 128 71 ∞ .10 .17 .20 .55 ∞
10 0.6 1.4 1.3 44 340 626 261 ∞ .09 .22 .20 .68 ∞

1.0 0.0 1 0.9 0.3 0.2 7 18 42 8 ∞ .16 .20 .31 .11 ∞
2 0.8 0.5 0.3 7 23 59 21 ∞ .07 .11 .18 .12 ∞
5 0.8 0.8 0.4 8 53 85 131 ∞ .03 .09 .10 .20 ∞
10 0.8 1.0 0.5 18 81 65 1375 ∞ .03 .07 .04 .35 ∞

1.0 0.5 1 0.8 0.3 0.3 3 5 8 8 115 .11 .10 .14 .19 4.65
2 0.8 0.5 0.5 6 9 23 20 2.2e3 .08 .08 .16 .28 9.59
5 0.7 1.0 0.9 21 49 115 82 ∞ .10 .13 .19 .51 ∞
10 0.6 1.3 1.1 53 285 566 299 ∞ .10 .19 .19 .66 ∞

1.0 1.0 1 0.8 0.3 0.5 2 3 11 9 ∞ .09 .08 .24 .29 ∞
2 0.7 0.6 0.8 6 10 30 19 ∞ .10 .12 .25 .36 ∞
5 0.6 1.0 1.1 21 60 142 66 ∞ .11 .18 .24 .58 ∞
10 0.6 1.3 1.2 49 348 723 239 ∞ .10 .22 .22 .70 ∞

Percentage losses relative to first-best simple rule in %. ∆Lworst : percentage reduction of worst-case loss
relative to worst single model policy. Implied Inflation (Variability) Premium in percentage points. Final
column: reduction of worst Implied Inflation (Variability) Premium relative to worst single model policy.



F.3 Minimax and Ambiguity Averse

Table 25: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium Premium
λ∆r λy ξ ρ α β CW-F CW-T SW AW ∆Lworst CW-F CW-T SW AW ∆Lexpect

Minimax

0.5 0.0 1 0.9 0.7 0.4 0 23 35 39 6 0 .25 .25 .48 7
2 0.9 0.8 0.5 0 32 53 129 7 0 .15 .16 .57 17
5 0.9 0.9 0.5 0 55 62 1003 9 0 .09 .08 .61 47

10 0.8 1.0 0.5 5 59 34 8390 16 .01 .05 .03 .58 48

0.5 0.5 1 0.8 0.6 0.5 0 7 6 25 3 0 .13 .09 .54 3
2 0.8 0.7 0.6 0 12 18 74 7 0 .10 .11 .73 9
5 0.7 1.1 0.9 4 46 92 219 16 .02 .12 .15 .74 12

10 0.7 1.3 1.1 23 233 426 611 20 .05 .17 .16 .74 10

0.5 1.0 1 0.8 0.6 0.7 0 4 13 25 3 0 .11 .22 .69 3
2 0.8 0.7 0.8 0 12 29 56 7 0 .13 .20 .77 6
5 0.7 1.1 1.0 4 57 116 165 14 .03 .17 .19 .79 10

10 0.6 1.4 1.2 22 292 534 464 19 .05 .20 .19 .77 9

1.0 0.0 1 0.9 0.4 0.4 0 32 53 30 7 0 .36 .40 .43 6
2 0.9 0.6 0.4 0 37 67 86 7 0 .18 .20 .44 11
5 0.9 0.8 0.4 0 58 72 876 8 0 .10 .09 .59 40

10 0.8 0.9 0.5 3 58 36 8435 15 .01 .05 .03 .59 50

1.0 0.5 1 0.9 0.4 0.4 0 10 7 22 3 0 .20 .12 .53 3
2 0.8 0.6 0.5 0 12 15 66 6 0 .11 .11 .73 8
5 0.7 0.9 0.8 5 47 100 187 15 .03 .13 .17 .74 10

10 0.7 1.2 1.0 27 241 488 531 20 .06 .17 .18 .75 9

1.0 1.0 1 0.8 0.4 0.5 0 5 8 19 2 0 .12 .17 .64 2
2 0.8 0.6 0.6 0 12 26 42 6 .01 .14 .22 .70 4
5 0.7 1.0 0.9 7 59 129 134 13 .04 .18 .22 .78 7

10 0.6 1.3 1.1 27 306 622 398 18 .06 .21 .21 .78 7
Relative loss: percentage losses relative to first-best simple rule in %. ∆Lworst : percentage reduction of
worst-case loss relative to worst outcome under flat Bayesian priors. Implied Inflation (Variability) Premium
in percentage points. Premium: percentage increase in expected loss relative to Bayesian policy (flat priors).



Table 26: Performance Relative to First-best Simple

Rule Relative Loss Inflation Premium
λ∆r λy ξ ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

Ambiguity Averse CW-T

0.5 0.0 1 0.9 0.5 0.3 2 16 28 28 .03 .17 .21 .35
2 0.9 0.7 0.4 1 23 45 114 .01 .11 .14 .51
5 0.9 0.9 0.4 0 48 57 1006 0 .08 .07 .61

10 0.8 1.0 0.5 5 55 34 8392 .01 .05 .02 .58

0.5 0.5 1 0.9 0.4 0.5 1 4 5 22 .02 .07 .08 .47
2 0.8 0.6 0.6 1 8 15 75 .01 .07 .10 .74
5 0.8 1.0 0.8 5 36 80 221 .03 .10 .13 .74

10 0.7 1.3 1.1 24 197 393 613 .05 .15 .16 .74

0.5 1.0 1 0.8 0.4 0.6 0 3 12 24 .02 .07 .21 .69
2 0.8 0.6 0.8 1 8 25 57 .01 .09 .18 .78
5 0.7 1.0 1.0 5 45 99 167 .03 .14 .17 .79

10 0.7 1.3 1.2 22 245 487 466 .05 .18 .18 .78

Relative loss: percentage losses relative to first-best simple rule in %. Implied Inflation (Variability)
Premium in percentage points.



F.4 Minimax and CW-T Ambiguity Averse Implied Priors

Table 27: Minimax Implied Priors

λ∆r λy ξ CW-F CW-T SW AW

Minimax

0.5 0.0 1 1.000 0.0 0.0 0.000

2 1.000 0.0 0.0 0.000

5 0.996 0.0 0.0 0.004

10 0.960 0.0 0.0 0.040

0.5 0.5 1 1.000 0.0 0.0 0.000

2 0.989 0.0 0.0 0.011

5 0.883 0.0 0.0 0.117

10 0.789 0.0 0.0 0.211

0.5 1.0 1 1.000 0.0 0.0 0.000

2 0.961 0.0 0.0 0.039

5 0.870 0.0 0.0 0.130

10 0.782 0.0 0.0 0.218

1.0 0.0 1 1.000 0.0 0.0 0.000

2 1.000 0.0 0.0 0.000

5 1.000 0.0 0.0 0.000

10 0.967 0.0 0.0 0.033

1.0 0.5 1 1.000 0.0 0.0 0.000

2 0.994 0.0 0.0 0.006

5 0.862 0.0 0.0 0.138

10 0.770 0.0 0.0 0.230

1.0 1.0 1 0.991 0.0 0.0 0.009

2 0.923 0.0 0.0 0.077

5 0.831 0.0 0.0 0.169

10 0.755 0.0 0.0 0.245
Bayesian priors backing the minimax solution.



Table 28: Ambiguity Averse CW-T Implied Priors

λ∆r λy ξ CW-F CW-T SW AW

Ambiguity Averse CW-T

0.5 0.0 1 0.500 0.5 0.0 0.000

2 0.500 0.5 0.0 0.000

5 0.497 0.5 0.0 0.003

10 0.479 0.5 0.0 0.021

0.5 0.5 1 0.500 0.5 0.0 0.000

2 0.499 0.5 0.0 0.001

5 0.435 0.5 0.0 0.065

10 0.386 0.5 0.0 0.114

0.5 1.0 1 0.500 0.5 0.0 0.000

2 0.476 0.5 0.0 0.024

5 0.423 0.5 0.0 0.077

10 0.380 0.5 0.0 0.120

Bayesian priors backing the CW-T ambiguity averse solution. Parame-
ters: e = 0.5, pCW−T ≈ 1 and pm ≈ 0 for all other models.



F.5 Insurance Premium: Plots of Minimax Losses

Figure 7: Minimax Losses vs. Bayesian Losses
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Figure 7: For λ∆r = 0.5, ξ=1 (top left), ξ=2 (top right), ξ = 5 (bottom left), ξ = 10 (bottom right), flat
priors and varying λy the panel plots expected losses and maximum losses for the Bayesian and minimax
strategy.



CFS Working Paper Series: 
 

No. Author(s) Title 

2005/04 Torben G. Andersen 
Tim Bollerslev 
Francis X. Diebold 
Jin (Ginger) Wu 

A Framework for Exploring the Macroeconomic 
Determinants of Systematic Risk 

2005/05 Jan Pieter Krahnen Der Handel von Kreditrisiken: Eine neue 
Dimension des Kapitalmarktes 

2005/06 Günter Franke 
Jan Pieter Krahnen 

Default Risk Sharing Between Banks and Markets: 
The Contribution of Collateralized Debt 
Obligations 

2005/07 Dirk Krueger 
Harald Uhlig 

Competitive Risk Sharing Contracts with One-
Sided Commitment 

2005/08 Torben G. Andersen 
Tim Bollerslev 
Peter F. Christoffersen 
Francis X. Diebold 

Volatility Forecasting 

2005/09 Markus Haas 
Stefan Mittnik 
Bruce Mizrach 

Assessing Central Bank Credibility During the 
ERM Crises: Comparing Option and Spot Market-
Based Forecasts 

2005/10 Juan Carlo Conesa 
Dirk Krueger 

On the Optimal Progressivity of the Income Tax 
Code 

2005/11 Markus Haas 
Stefan Mittnik 
Marc S. Paolella 

Modeling and Predicting Market Risk With 
Laplace-Gaussian Mixture Distributions 

2005/12 
 
Dirk Krueger 
Felix Kubler 

 
Pareto Improving Social Security Reform when 
Financial Markets are Incomplete!? 

2005/13 
 
Keith Kuester  
VolkerWieland 

 

 
Insurance Policies for Monetary Policy in the Euro 
Area 

 
 
 
Copies of working papers can be downloaded at http://www.ifk-cfs.de  


	abstract.pdf
	April 2005




