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1 Introduction

Stochastic optimization remains the principal paradigm for analyzing eco-

nomic decision making whether it concerns expected utility maximization by

households, expected profit maximization by firms or optimal monetary pol-

icy design by central banks. As to monetary policy, central bank staff now

routinely use macroeconomic models to compute policy rules that aim to

minimize expected losses under a variety of economic shocks and parameter

values. Such rules form part of regular staff input into central bank decision

making. Even members of central bank boards have emphasized implications

of expected loss minimization under uncertainty such as Brainard’s (1967)

prescription of caution in policy making.

Recent research has proposed worst-case analysis—also referred to as min-

imax or robust control—as an alternative paradigm for economic decision

making in general, and monetary policy design in particular.1 So far, how-

ever, this literature has delivered mixed results concerning the implications

of worst-case analysis for the practice of monetary policy. It is criticized for

prescribing extreme policy activism and for focusing on very unlikely events

(cf. Svensson (2000), Sims (2001)). It is perceived as highly technical and

not conducive to practical application.

This paper aims to show that worst-case analysis offers intuitive policy

1An early advocate of worst-case analysis in monetary policy design was von zur
Muehlen (1982). More recent contributions include Sargent (1999), Onatski and Stock
(2002), Giannoni (2002), Tetlow and von zur Muehlen (2001) and Zakovic, Rustem and
Wieland (2002). For applications in other areas of economic decision making see Hansen
and Sargent (2001) and the forthcoming monograph of Hansen and Sargent.
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prescriptions and can be of great use for the practice of monetary policy. To

this end, we adopt a worst-case robust strategy following Rustem and Howe

(2002) and Rustem and Zakovic (2004) rather than the H-infinity approach

discussed by Basar and Bernard (1991) and others, and recently applied

by contributors to the monetary policy literature. We compare worst-case

analysis to expected loss minimization using a small macroeconomic model

estimated for the euro area by Orphanides and Wieland (2000).2

First, we show that worst-case analysis and expected loss minimization

deliver identical policy rules under strict inflation targeting as long as the

model used is linear and the uncertainty due to economic shocks is additive

and symmetric. In this case, the optimal rule under both approaches is

identical to the optimal rule in the absence of shocks, that is, certainty-

equivalence applies.

Next, we relax the assumptions of symmetric shocks, known parameters

and strict inflation targeting. As to the shocks we show that worst-case

analysis provides a straightforward approach for incorporating and insur-

ing against an asymmetric balance of risks. As to the parameters it is well

known that uncertainty regarding policy effectiveness, which is a multiplica-

tive parameter3, leads to more moderate policy responses under expected loss

minimization—Brainard’s (1967) principle of cautionary policy. We show

that the same principle applies under worst-case analysis in our model. In

2The model is similar to Svensson (1997) and Ball (1999). Sargent (1999) applied
H-infinity robust control to Ball’s model.

3The respective parameter in our model is the interest-rate sensitivity of aggregate
demand.

2



fact, depending on the range of possible parameter values considered, worst-

case analysis may even lead to somewhat more cautious policy responses

than expected loss minimization. Flexible inflation targeting, which includes

output in the loss function4, implies a trade-off between output and inflation.

It is well known that this trade-off leads to a more moderate policy response

to inflation deviations from target under flexible than under strict inflation

targeting. We obtain the same result under worst-case analyis. Quanti-

tatively though, the moderating effect is smaller than under expected loss

minimization.

Then, we proceed to consider uncertainty with regard to all parameters

in the model. Again we find that Brainard’s principle of cautionary policy

extends from expected loss minimization to worst-case analysis. Following

Orphanides and Wieland (2000) we go beyond the initial linear model and

allow for nonlinearity in the inflation-unemployment trade-off. Both algo-

rithms we use in this paper, the mean-variance optimization due to Zakovic

et al (2004) and the minimax algorithm due to Rustem and Howe (2002) and

Rustem and Zakovic (2004), directly extend to nonlinear models.5

Finally, we illustrate the insurance properties of worst-case analysis com-

pared to expected loss minimization. Minimax is shown to provide insurance

cover for a given range of shocks and parameter values by establishing the

maximum loss over this range. The desired range needs to be specified by

4The terminology of strict and flexible inflation targeting is adopted from Svensson
(1997).

5The approach we use for computing optimal response parameters in feedback rules is
based on Karakitsos and Rustem (1984) and its extension to robust policies in Rustem
(1994).
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the policy maker. We obtain a measure of the cost of insurance for a chosen

range of shocks and parameters. This cost is best expressed in terms of the

deterioration in the expected loss criterion that results from implementing

the minimax policy. In practical terms, we propose that an inflation target-

ing central bank consider the equivalent increase in inflation variability when

choosing the range of uncertainties it wants to cover by means of worst-case

analysis.

2 The model

We use a simple macroeconomic model similiar to Svensson (1997), Ball

(1999) and Orphanides (2003). This model has been estimated by Or-

phanides and Wieland (2000) with annual euro area data from 1976 to 1998.

It explains the relationships between three key macroeconomic variables, in-

flation, πt, the output gap, yt and the short-term nominal interest rate, it,

which is the instrument of monetary policy. For simplicity, the dynamic

structure is collapsed to a single lag of output and inflation and inflation ex-

pectations are assumed to be backward-looking and equal to past inflation.

Under these assumptions, the real interest rate, rt, is defined as

rt = it − πt. (1)

Output depends positively on its own lag and negatively on the real interest

rate according to the following simple aggregate demand equation:

yt+1 = ρyt − ξrt + ut+1. (2)
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A standard accelerationist Phillips curve relates inflation to lagged inflation

and the output gap:

πt+1 = πt + αyt+1 + et+1 (3)

The model parameters are α, ξ > 0 and ρ ∈ [0, 1), while et+1, ut+1 are zero–

mean normally distributed shocks. In addition, Orphanides and Wieland

(2000) consider a nonlinear specification of the Phillips curve:

πt+1 = πt + αzZ(yt+1; ς) + et+1. (4)

The function Z(y; ς; c) is approximately zero in a range of width ς and linear

outside that range.6 An example of such a “zone-linear” Phillips curve is

shown in Figure 1. The euro area parameter estimates obtained by Or-

phanides and Wieland (2000) are summarized in Table 1.

Table 1: Model Estimates

ρ 0.77 (0.11)
ξ 0.40 (0.10)
σu 0.84
α 0.34 (0.13)
σe 0.96
αz 0.81 (0.28)
ς 2.0
σe,z 0.94

Values in parenthesis are stan-
dard errors. σu, σe, σe,z are
standard deviations of shocks.

6The exact specification of Z used by Orphanides and Wieland is Z(y; ς; c) = y −
1
2

√
c + (y + ς

2 )2 + 1
2

√
c + (−y + ς

2 )2 where c is set to 0.1.
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Figure 1: Linear and Zone-Linear Phillips Curves
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Notes: The dotted line plots the linear Phillips curve
πt+1 = πt + α yt+1. The solid line plots the zone-linear
Phillips curve πt+1 = πt+αz Z(yt+1; ζ) with a slope αz > α.

We have chosen this model for its simplicity and its usefulness for organiz-

ing our results in terms of key concepts frequently encountered in monetary

policy discussions. Even in such a simple model solving for stochastically

optimal or minimax policies under general parameter and shock uncertainty

remains a nontrivial exercise. The simplicity of the model of course comes

at a cost. Specifically, the model is not derived from optimizing household

and firm behavior and abstracts from explicit forward-looking modeling of

expectations.7

7Thus, we do not take into account the interaction of policy design and private ex-
pectations formation, we cannot distinguish between discretion and commitment in poli-
cymaking and we cannot address questions of policy credibility. In future work, we plan
to extend the stochastic optimization algorithm and the mini-max algorithm used in this
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However, we adopt an important lesson from models with forward-looking

expectations formation by focusing on the choice of a simple Taylor (1993)-

style interest rate rule rather than choosing interest rates on a period-by-

period basis.8 Thus, the central bank’s decision problem consists of choosing

the response parameters xπ and xy in the following rule:

it = πt + xπ(πt − π∗) + xyyt (5)

where π∗ denotes the central bank’s inflation target. The choice of policy pa-

rameters will be made with respect to the central bank’s preferences regarding

output and inflation performance. We assume a conventional specification of

these preferences in form of the following per-period loss function

lt+s = ω(πt+s − π∗)2 + (1 − ω)y2
t+s, ω ∈ (0, 1). (6)

Following the terminology of Svensson (1997) ω = 1 corresponds to strict

inflation targeting and 0 < ω < 1 to flexible inflation targeting.

3 Stochastic optimization versus worst-case

analysis

Expected loss minimization as of period t implies choosing the parameters of

the policy rule, xπ and xy in equation (5), so as to minimize the expected

discounted sum of future per-period losses from t + 1 onwards subject to the

paper to account for explicit forward-looking expectations formation. A strength of our
current algorithms is that they can handle nonlinear specifications of the economy, such
as the zone-linear Phillips curve in (4) without difficulty.

8See also Levin, Wieland and Williams (1999, 2003) for the benefits of simple rules and
Tetlow and von zur Muehlen (2001) for an analysis of simple rules under robust control.
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equations determining the dynamics of output, inflation and interest rates:

min
xπ,xy

Et

[ ∞∑
s=1

βt+s−1lt+s

]
s.t. (2), (3), (5) (7)

Here β denotes the constant discount factor. In forming expectations re-

garding future losses the central bank needs to consider a wide range of

uncertainties. We summarize uncertainty regarding parameters and shocks

in the vector v = [ξ, ρ, α, w], where future shocks are collected in the vector

w = [(u1, e1), (u2, e2), ...]. The central bank’s objective can then simply be

expressed as a function f(x, v) of the vector of policy choices x and the vector

of uncertainties v:

f(x, v) =
∞∑

s=1

βt+s−1lt+s(πt+s(x, v), yt+s(x, v)), (8)

In this notation inflation and output are also expressed as functions of x and

v, that is π(x, v) and y(x, v). These functions are determined by equations

(2), (3) and (5). Of course, in the nonlinear version of the model equation

(3) will be replaced with equation (4) in defining π(x, v).9

Using the function f() defined by (8) the problem of minimizing expected

losses can simply be written as

min
xπ,xy

Et,v(f(x, v)), (9)

where Ev refers to the expectation with respect to the uncertain variables

v, which is defined as v = v + ν, where ν is normally distributed with

zero mean and standard deviation Λ ∼ N (0, Λ). Parameter estimates and

standard deviations of parameters and shocks are obtained from Table 1.

9Note also that the nonlinear or zone-linear specification nests the standard linear
specification with a zone of zero width ς = 0.
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Compared to expected loss minimization worst-case analysis offers an

important advantage. Worst-case analysis does not require any knowledge

regarding the probability distributions of unknown parameters and shocks.

Instead, the decision maker guards against particular bad outcomes by acting

as if he would play a game against nature. In this game nature chooses

shocks and parameters to maximize the loss function, while the decision

maker chooses the controls to minimize the loss. Thus, following the worst-

case approach the central bank in our model chooses xπ and xy in order to

minimise the discounted sum of future per-period losses with respect to the

worst possible outcomes of the uncertain shocks ut and et and parameters

(α, δ, ρ, ξ) that are summarized in the vector of uncertainties, v:

min
x

max
v

f(x, v),

s.t. v ≤ v ≤ v. (10)

We refer to this minimax approach as box–constrained. v and v constitute

the upper and lower bounds for the uncertain parameters and shocks. These

bounds need to bet set by the decision maker. The decision rule derived

from (10) then limits the maximum loss over the range defined by these

bounds. In other words, this decision rule represents an insurance policy

that no worse loss will occur over the set range. Note however, that there

may exist multiple global maxima. A question that arises naturally in this

context concerns the rationale for setting a specific range. This question is

nontrivial when the possible range is infinite. We will provide a practical

answer to this question later in this paper.
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H∞ robust control as presented in Basar and Bernhard (1991) constitutes

an alternative worst-case approach. Contrary to the minimax approach out-

line above no interval for the possible value of uncertainties is given. Instead,

the H∞ approach solves the transformed minimax problem:

min
x

max
v

f(x, v) − γ2‖v‖2
2, (11)

where γ = γ(v, v). The main problem of this approach is the proper choice

of γ. If γ is large, it will force ‖v‖ → 0. On the other hand, if γ is too small

it may force ‖v‖ → ∞. H∞ seeks the values of γ that renders the minimax

problem convex in x and concave in v. It yields a robust solution that is also

a saddle point but does so for a transformed objective.

We now turn to the numerical computation of optimal policies under

stochastic optimization and minimax analysis with box constraints. In both

cases, we approximate the infinite horizon objective function with a long

but finite horizon of 20 periods. The discount factor is set to β = 0.9 and

the central bank’s inflation target to π∗ = 0. The parameter values and

standard deviations are set as reported in Table 1 for the annual euro area

model of Orphanides and Wieland (2000). We will consider the linear as well

as the nonlinear specification of the economy. For detailed descriptions of

the nonlinear stochastic optimization and minimax algorithms we refer the

reader to Zakovic et al. (2004) and Rustem and Zakovic (2004) respectively.
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4 Optimal policy rules under stochastic opti-

mization and worst-case analysis

4.1 A benchmark case

First, we consider a benchmark specification, for which expected loss mini-

mization and minimax analysis with box constraints imply identical optimal

policy rules. This benchmark corresponds to the linear-quadratic decision

problem with a single target variable, known parameters and symmetric

shocks. In other words, our benchmark case is a strict inflation targeting

central bank, (ω = 1), which only faces uncertainty regarding the additive

and symmetric shocks, u and e, in the linear model defined by equations (2),

(3) and (5). By symmetry of the shocks we mean that expected loss mini-

mization is conducted with respect to normal distributions that are symmet-

ric around a zero mean, while the minimax problem with box constraints is

solved with upper and lower bounds that are symmetric around zero.

The solution under expected loss minimization is very simple and famil-

iar. Being only concerned with inflation the central bank can choose the

policy response coefficients, xπ and xy, such that all predictable variation

in inflation is offset by movements in the real interest rate and output gap.

This is possible because the policy rule (5) contains both pre-determined

or state variables of the model, lagged inflation and the lagged output gap.

Consequently, this rule nests the optimal policy under discretion. The as-

sumptions under the benchmark case ensure that the solution to the infinite

horizon stochastic optimization problem defined by (8) and (9) is identical
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to the solution of the following one-period problem:10

min
xπ,xy

Et(πt+1 − π∗)2

s.t. yt+1 = ρyt − ξ(it − πt) + ut+1, (12)

πt+1 = πt + αyt+1 + et+1

it = πt + xπ(πt − π∗) + xyyt

e ∼ N (0, σe), u ∼ N (0, σu)

From this one-period problem it is immediately apparent that the following

setting of the policy response parameters

xELM
π =

1

αξ
= 7.35 , xELM

y =
ρ

ξ
= 1.93 (13)

implies that πs = es + αus for all periods s = t + 1, t + 2, ...,∞. Thus, as

stated above all predictable variation in inflation is offset by policy and actual

inflation will follow a purely random process. Furthermore, the optimal rule

in the model with additive normally distributed shocks is identical to the

optimal rule in the absence of those shocks. Thus, certainty-equivalence

applies and the optimal response parameters are independent of the degree

of uncertainty.

Given the solution for the benchmark case under expected loss minimiza-

tion it is perhaps not surprising that the solution under minimiax analysis

with symmetric upper and lower bounds on shocks e and u turns out to be

identical:

xminimax
π =

1

αξ
= 7.35 , xminimax

y =
ρ

ξ
= 1.93 (14)

10This point has also been made by Svensson (1997) in the context of strict inflation
targeting.
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The minimax problem also exhibits certainty-equivalence. For example, we

obtain identical response coefficients when considering symmetric bounds

such as (u/u) = ( –/+ kσu) and (e/e) = ( –/+ kσe) for all values of the

factor k ∈ {0.5, 1, 1.5}.11

In the remainder of the paper we generalize the central bank’s decision

problem and consider additional uncertainties while comparing the resulting

policy response coefficients to the above benchmark policy.

4.2 An asymmetric balance of risks

Having established certainty-equivalence under the common benchmark of

symmetric additive uncertainty our first modification is to consider asym-

metries in the uncertainty. While such asymmetry is rarely discussed in

academic studies, it is standard fare of monetary policy debates under the

term ’balance of risks’. Monetary policy makers often perceive information

that may bias their assessment of current uncertainties in one direction or

the other.

Including an asymmetric balance of risks in standard stochastic optimiza-

tion analysis would require specifying probability distributions for the shocks

that are biased in one of the directions. Instead, worst-case analysis offers an

easier route to guard against the dangers arising from an asymmetric balance

of risks. The central bank may simply specify a greater upper or lower bound

in the minimax problem with box constraints depending on the direction of

the perceived risks. Such an asymmetry will break the certainty-equivalence

11As reported in Table 1 σu = 0.84 and σe = 0.96.
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result obtained above and modify the required policy response.

We illustrate the effect of an asymmetric balance of risks in the minimax

problem with box constraints by comparing three scenarios: (i) symmetric

bounds (benchmark), (ii) (u = −0.5σu, e = −0.5σe) and (u = σu, e = σe),

(high) and (iii) (u = −σu, e = −σe) and (u = 0.5σu, e = 0.5σe) (low). In

scenario (ii) the greater risk is on the high side, while on the low side in

scenario (iii).

Table 2 reports the optimal policy response coefficients under the three

scenarios specified above. Our findings confirm that asymmetry of the bal-

ance of risks breaks certainty-equivalence. Thus, the policy response depends

on the degree of asymmetry. For the scenarios considered, the response coef-

ficients with asymmetric risks are found to be smaller than with symmetric

risks.

Table 2: Asymmetric risks

minimax xπ xy

(i) symmetric risk 7.35 1.93
(ii) high-side risk 6.02 1.75
(iii) low-side risk 6.44 1.77

4.3 Uncertainty regarding policy effectiveness

With respect to stochastic optimization it is well known that multiplicative

parameter uncertainty breaks the certainty-equivalence principle and intro-

duces caution in decision making. In the monetary policy literature such

parameter uncertainty is often referred to as Brainard uncertainty due to the
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original contribution of Brainard (1967). He showed that the degree of policy

activism varies inversely with the extent of uncertainty about policy effective-

ness. Consequently, the response coefficients xπ and xy in our model should

vary inversely with the standard deviation of the interest-rate sensitivity of

aggregate demand, ξ. As reported previously the euro area estimate of ξ in

Orphanides and Wieland (2000) is equal to 0.40 with a standard deviation

σξ of 0.10.

In the first two columns of Table 3 we report the optimal policy co-

efficients under expected loss minimization for three levels of uncertainty

regarding the interest rate sensitivity of aggregate demand: (i) half the es-

timated standard deviation, (ii) the estimated standard deviation, and (iii)

1.5 times the estimated standard deviation.

Table 3: Uncertainty regarding ξ

ELM minimax
xπ xy xπ xy

Benchmark 7.35 1.93 7.35 1.93
(i) 0.5σξ 7.08 1.88 6.80 1.87
(ii) σξ 6.55 1.84 6.62 1.74
(iii) 1.5σξ 6.01 1.82 6.33 1.64

ELM: expected loss minimization.

The results reported under the heading ELM confirm the Brainard princi-

ple. Increasing uncertainty regarding ξ leads to a reduction in the optimal

responsiveness of the policy rule to output and inflation fluctuations. The

coefficient on inflation declines from 7.35 to 6.01 while the coefficient on the

output gap declines from 1.93 to 1.82. As a consequence, the central bank
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conducts interest rate policy in a more cautious manner.

The third and fourth column of Table 3 show the optimal policy coeffi-

cients under minimax analysis with box constraints. We consider three sets

of symmetric upper and lower bounds: (i) (ξ/ξ) = (0.40 –/+ 0.5σξ), (ii)

(ξ/ξ) = (0.40 –/+ σξ), and (iii) (ξ/ξ) = (0.40 –/+ 1.5σξ).

Our first important finding is that the Brainard principle also applies

under minimax with box constraints. Widening the upper and lower bounds

symmetrically leads to a reduction in the optimal policy coefficients. The

coefficient on inflation declines from 7.35 to 6.33, while the coefficient on

output falls from 1.93 to 1.64. This finding strikes a different note than

recent discussions in the literature which have emphasized that worst-case

analysis tends to imply a greater extent of policy activism to guard against

particularly bad outcomes (cf. Sargent (1999), Onatksi and Stock (2002)).

A second interesting finding is that the degree of policy cautiousness

may be more or less pronounced under minimax with box constraints than

under expected loss minimization depending on the range of parameter values

considered.

4.4 Flexible inflation targeting

If one were to compare the optimal policy rules we have computed so far with

estimated rules, it would become immediately apparent that the coefficient

on inflation deviations from target is extremely large. We have obtained

optimal values of xπ between 6.0 and 7.5, because we have focused on a

strict inflation targeting central bank, (ω = 1). Such a central bank aims

16



to eliminate all predictable variation in inflation in our benchmark case with

known parameters and additive symmetric shocks. Predictable variation in

output, however, is very large under such a policy. Thus, including output

deviations from potential in the central bank loss function appears more

relevant from an empirical perspective.

Table 4: Flexible inflation targeting

ELM minimax
xπ xy xπ xy

Benchmark 7.35 1.93 7.35 1.93
ω = 0.5 1.86 1.93 5.21 1.87

ELM: expected loss minimization.

For this reason, we consider a flexible inflation targeting central bank

that assigns equal weight to output and inflation in the loss function, (i.e.

ω = 0.5 in equation (6)). Optimal policy coefficients are reported in Table

4. As expected the optimal value of xπ under expected loss minimization is

much smaller, 1.86 instead of 7.35. The coefficient on inflation also declines

under minimax analysis but to a lesser extent than under expected loss min-

imization. Interestingly, under minimax analysis (with symmetric standard

deviation bounds on the shocks) both policy coefficients decline as we move

from strict to flexible inflation targeting.

4.5 Uncertainty regarding all parameters and shocks

We are now ready to proceed with a comparison of expected loss minimiza-

tion and minimax analysis for flexible inflation targeting taking into account
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uncertainty regarding all parameters and shocks in our model. First, we con-

duct this comparison for the linear version of our model, which consists of

equations (2), (3) and (5) and then for the nonlinear version where the linear

Phillips curve, equation (3), is replaced with the zone-linear Phillips curve

defined by equation (4) and previously shown in Figure 1.

Linear model

The linear model contains three unknown parameters, the interest-rate

sensitivity of aggregate demand, ξ, the coefficient on the lag of the output

gap, ρ, and the slope of the accelerationist Phillips curve, α. We compute the

optimal policy that minimizes expected loss using the euro area parameter

estimates and standard errors of Orphanides and Wieland (2000) as reported

in Table 1. The optimal values for the response coefficients are somewhat

smaller than in the case without parameter uncertainty reported in Table

4:

xELM
π = 1.73 , xELM

y = 1.89 (15)

Thus, again the Brainard principle survives. Including additional sources of

parameter uncertainty decreases the extent of policy activism.

Turning to minimax analysis with box constraints we use standard de-

viation bounds on the shocks e and u and consider three different scenarios

for the bounds on the parameters ξ, ρ and α: (i) half the estimated stan-

dard deviation, (ii) the estimated standard deviation, and (iii) 1.5 times the

estimated standard deviation.
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Table 5: Linear model—all parameters

minimax xπ xy

(i) 0.5 standard deviation 4.62 1.81
(ii) 1.0 standard deviation 3.97 1.68
(iii) 1.5 standard deviation 2.80 1.60

Again, we confirm that the Brainard principle applies under minimax

analysis with box constraints. As the width of the range on the parameters

considered increases, the policy response coefficients decline.

Nonlinear model

We also compute optimal policy rules for the nonlinear version of our

model in order to show that the algorithms we use can easily be applied

to study important nonlinearities.12 We use the estimated zone width, ς =

2.0, for the zonelinear Phillips curve, equation (4) and consider parameter

uncertainty regarding the interest-rate sensitivity of aggregate demand, ξ,

the coefficient on the lag of the output gap, ρ, and the slope of the zone-

linear Phillips curve, αz. The optimal values of xπ and xy under expected

loss minimization turn out to be smaller than in Table 4:

xELM
π = 0.51 , xELM

y = 1.86 (16)

In particular, the inflation coefficient declines substantially because of the

flat zone in the Phillips curve.

As shown in Table 6 minimax analysis with box constraints continues

to obey the Brainard principle. Wider bounds for the unknown parameters

12To maintain comparability to the preceding analysis, however, we do not consider
optimal nonlinear policy rules. For an analysis of nonlinear policies under expected loss
minimization the reader is referred to Orphanides and Wieland (2000).
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imply smaller policy responses to output and inflation and thus less activist

policy. The response coefficients now take values that do not appear unusual

or extreme compared to actual interest-rate setting by central banks.

Table 6: Nonlinear model—all parameters

minimax xπ xy

(i) 0.5 standard deviation 3.29 1.66
(ii) 1.0 standard deviation 2.77 1.45
(iii) 1.5 standard deviation 2.25 1.17

5 How to frame the use of worst-case analysis

in monetary policy design

Having shown that worst-case analysis delivers intuitive policy implications

and does not recommend extreme policy activism, the question nevertheless

remains, why central banks should use worst-case analysis and if so, how it

should be done. Reasons for considering worst-case analysis are not hard to

come by.

First, worst-case analysis does not require any confidence in the central

bank’s ability to specify probability distributions regarding unknown model

parameters and economic shocks. In other words, worst-case analysis consti-

tutes a desirable tool for deriving policy recommendations when faced with

Knightian uncertainty that precludes the use of stochastic optimization.

Second, worst-case analysis provides insurance that the performance loss

is contained over a pre-specified range of uncertainties. This point is illus-

trated by Table 7, which reports the maximum losses for alternative ranges

of parameters and shocks in the linear and nonlinear model. These losses
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correspond to the values of the function f(x, v) defined by equation (10) for

alternative ranges of the uncertainties summarized in v. The policy response

coefficients associated with these losses have already been reported in Table

5 and Table 6.

Table 7: Maximum losses

Linear model Nonlinear model
minimax ELM minimax ELM

(i) 0.5 st. dev. 62 84 44 55
(ii) 1.0 st. dev. 100 160 66 91
(iii) 1.5 st. dev. 175 248 122 173

To give an example for the linear model, the value of 100 in the first

column of row (ii) corresponds to the maximum loss under the minimax

policy with values of α, ξ, ρ, e and u within one standard deviation from the

mean. The respective policy coefficients are xπ = 3.97 and xy = 1.68. Thus,

this rule provides an insurance policy that no combination of parameter and

shock values within one standard deviation from the mean would generate a

loss greater than 100.

The maximum loss under expected loss minimization, however, is much

larger than under minimax analysis. It is reported at a value of 160 in the

second column of row (ii). The associated policy coefficients are xπ = 1.73

and xy = 1.89. Thus, moving from expected loss minimization to worst-case

analysis reduces the maximum loss by 37.5 percent.

As shown in Table 7 the maximum loss increases with the range of pos-

sible parameter values considered. Furthermore, the policy that minimizes

expected loss tends to generate consistently higher maximum losses than the
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minimax policy. Thus, worst-case analysis provides substantial insurance

benefits.

The question remains how to set the bounds for the range of uncertainties

to be covered by the minimax approach. A simple cost-benefit comparison

renders the choice of these ranges straightforward. The insurance benefit

consists of the reduction in maximum loss reported in Table 7, while the cost

of insurance corresponds to the resulting increase in expected loss under the

minimax policy. Thus, the decision maker may simply choose the extent of

insurance cover depending on its cost in terms of expected loss. For example,

as can be seen from Table 8 the cost of one standard deviation of insurance

cover on all parameters and shocks corresponds to an increase in expected

loss from 17 to 23 in the linear model (25 percent) and from 30 to 51 in the

non-linear model (70 percent).

Table 8: Expected losses

Linear model Nonlinear model
minimax ELM minimax ELM

1.0 standard deviation 23 17 51 30

Alternatively, the cost of insurance cover by minimax analysis may be ex-

pressed in terms of the implied increase in expected inflation variability. For

example, the increase in expected loss from 17 to 23 discussed above is equiv-

alent to an increase in the standard deviation of inflation by 20 basis points

over the 20 periods considered in our numerical calculations. Presented with

the cost of insurance in these terms, a cautious policy maker may well choose

to consider a worst-case type rule as benchmark for interest-rate policy.
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6 Conclusions

Using a simple estimated model of the euro area we have shown that minimax

analysis with box constraints tends to obey the Brainard principle of cau-

tionary policymaking in much the same way as expected loss minimization.

We found that simple Taylor-style policy rules optimized under a minimax

objective in the presence of general parameter and shock uncertainty do not

imply extreme policy activism. Instead, such rules are effective insurance

policies limiting maximum loss over ranges of parameter values to be set by

the policy maker.

Thus, we propose to frame the use of box-constrained minimax analysis

in practical monetary policy design in the following manner. Central bank

staff could compute the increase in inflation variability that is equivalent to

the increase in expected loss resulting from minimax policies over alternative

ranges for the uncertainties. With these measures of the cost of insurance

cover at hand, central bank decision makers could then pick a range that

they consider affordable.

So far, a limitation of our analysis is the lack of forward-looking expecta-

tion terms in the Phillips curve and aggregate demand equations. In future

work, we plan to extend our algorithms to allow for such terms in the model.

Then, we will be able to address questions concerning the interaction of policy

design and private expectations formation, policy discretion versus commit-

ment and policy credibility. Another project, which we can accomplish using

the current version of our algorithms, will be to extend our analysis to con-
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sider simple nonlinear policy rules as in Orphanides and Wieland (2000).
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