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Non-technical summary

Assumptions about the dynamic and distributional behavior of risk factors are crucial for the

construction of optimal portfolios and for risk assessment. It is widely accepted in empirical fi-

nancial analysis that asset returns are generally characterized by conditionally varying volatilities

and a conditional distribution that differs substantially from the normal distribution, exhibiting

excess kurtosis (fat–tails) and oftentimes skewness. Despite these phenomena, the normal dis-

tribution with constant variance continues to be the basic framework in mean–variance–based

portfolio management.

This paper presents a practical approach to portfolio selection within the mean–scale frame-

work which takes both the conditionally varying volatility and the non–normality of risk factors

explicitly into account. The model uses a GARCH–type structure for modeling risk factors’

dynamic and utilizes the stable distribution for describing the conditional distribution. The

proposed factor model for modeling asset returns generalizes the normal distribution assump-

tion while retaining analytical tractability and ease of implementation. An application to nine

stocks from the german DAX illustrates that the model is strongly favored by the data and that

it is practically implementable.
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Nichttechnische Zusammenfassung

Die Bewertung von Risiken und die optimale Zusammensetzung von Wertpapier–Portfolios

hängt insbesondere von den für die Risikofaktoren gemachten Annahmen bezüglich der zugrunde

liegenden Dynamik und den Verteilungseigenschaften ab. In der empirischen Finanzmarkt–

Analyse ist weitestgehend akzeptiert, daß die Renditen von Finanzmarkt–Zeitreihen zeitvari-

ierende Volatilität (Heteroskedastizität) zeigen und daß die bedingte Verteilung der Renditen

von der Normalverteilung abweichende Eigenschaften aufweisen. Insbesondere die Enden der

Verteilung weisen eine gegenüber der Normalverteilung höhere Wahrscheinlichkeitsdichte auf

(’fat–tails’) und häufig ist die beobachtete Verteilung nicht symmetrisch. Trotzdem stellt die

Normalverteilungs–Annahme mit konstanter Varianz weiterhin die Basis für den Mittelwert–

Varianz Ansatz zur Portfolio–Optimierung dar.

In der vorliegenden Studie schlagen wir einen praktikablen Ansatz zur Portfolio–Selektion mit

einem Mittelwert–Skalen Ansatz vor, der sowohl die bedingte Heteroskedastizität der Renditen,

als auch die von der Normalverteilung abweichenden Eigenschaften zu berücksichtigen in der

Lage ist. Wir verwenden dazu eine dem GARCH Modell ähnliche Dynamik der Risikofaktoren

und verwenden stabile Verteilungen anstelle der Normalverteilung. Dabei gewährleistet das von

uns vorgeschlagene Faktor–Modell sowohl gute analytische Eigenschaften und ist darüberhinaus

auch einfach zu implementieren. Eine beispielhafte Anwendung des vorgeschlagenen Modells

mit neun Aktien aus dem Deutschen Aktienindex veranschaulicht die bessere Anpassung des

vorgeschlagenen Modells an die Daten und demonstriert die Anwendbarkeit zum Zwecke der

Portfolio–Optimierung.
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1 Introduction

The fundamental decision problem faced by investors is how to allocate their wealth over many

financial assets. Standard portfolio theory assumes that investors and portfolio managers solve

this allocation problem to achieve the highest expected portfolio return for a given expected

portfolio risk (or achieve the lowest expected portfolio risk for a given expected portfolio return).

The concepts of expected return and risk cannot be defined in isolation from beliefs of the

investor on how asset returns will evolve. This issue is often resolved by making assumptions

on the evolution of the multivariate distribution governing the asset returns.

The most commonly adopted assumption is that the return vectors are multivariate normal

(cf. RiskMetrics Group, 1996). In the conventional mean–variance framework with multivariate

normal returns, portfolio risk is measured in terms of the variance or standard deviation of

the portfolio return. Clearly, the success of an investment strategy based on the normality

assumption is closely related to the ability of the multivariate normal distribution to approximate

the data generating process.

Empirical distributions of univariate financial asset returns are shown to exhibit fat tails.

Furthermore, large changes in asset returns are often clustered implying state dependent time-

varying moments. The issue of time-varying moments is successfully addressed using GARCH

models (Engle, 1982; Bollerslev 1986). However, the normal distribution is thin–tailed deem-

ing it an unsuitable candidate to approximate observed asset return distributions. Despite the

overwhelming omnipresence of fat tails in empirical return distributions, the popularity of the

normal assumption among practitioners persists. Apart from habit, the prevailing use of the

normal model has commonly been justified by its analytical tractability. Closure under lin-

ear transformation—that is, weighted sums of normally distributed random variables are also

normal—, together with the applicability of the central limit theorem make the normal assump-

tion very attractive for theoretical and empirical portfolio analysis.

A natural generalization and extension of the normal framework allowing fat tails is presented

by the family of stable Paretian distributions. In numerous empirical studies1 non–Gaussian

stable distributions have been found to be much more appropriate for modeling asset univariate

returns, while preserving desirable properties of the normal. First, they are closed under linear

transformation, implying that a linear combination of the elements of a stable random vector is

again stable. Second, they have domains of attraction and are governed by suitable central limit

theorems, implying that stable models possess a degree of robustness against misspecifications

(cf. Rachev and Mittnik, 2000, p. 2). Third, an analogous GARCH-stable framework can be

adopted to account for time-varying moments.

Despite of these attractive features, the stable model seems to play no role in practical port-

folio analysis. Probably the single most important reason for this is the difficulty of estimating

multivariate stable distributions from data. Even though the computational complexities—

arising due to the lack of a general analytic expression for the stable density and distribution
1 See, for example, Fama (1965a), Akgiray and Booth (1989), Mittnik and Rachev (1993), McCulloch (1997),

and Rachev and Mittnik (2000) and references therein.
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functions—are, nowadays, more or less unfounded for univariate stable distributions, given the

considerable progress in the computability of stable models during recent years,2 the estimation

of multivariate stable distributions remains as a challenge.

Obstacles regarding the theory of stable portfolios analysis had been overcome much ear-

lier with the development of stable mean–variance analogues. Fama (1965b) investigated the

distribution of a portfolio of stably distributed assets governed by a single–index structure and

subsequently (Fama, 1971) developed a stable version of the CAPM, which obtains efficient

portfolios by minimizing the scale parameter of the portfolio–return distribution for a given

mean return. Bawa and Lindenberg (1977) and Harlow and Rao (1989) show that, for stable

Paretian portfolios, a capital–market equilibrium exists within a mean–lower partial moment

framework, and that it is equivalent to that obtained through the mean–scale framework of

Fama (1971). Elton, Gruber and Bawa (1979) provide simple portfolio selection rules under

stable assumptions.

All these studies on stable portfolio analysis are of theoretical nature. They do not address

the problem of how to estimate the joint distribution of the individual asset returns. More

recent studies by Belkacem, Vèhel and Walter (1995, 2000) and Gamrowski and Rachev (1999)

reformulate the approach of Fama in an estimable framework and constitute a first attempt

towards empirical analysis. However, the sole empirical focus of these studies is the estimation

of the betas, i.e., the stocks’ association with an underlying factor, using covariation–based

methods, which represent a generalization of the linear–regression framework. They do not

address the question of how to estimate the joint distribution of the stocks and the factor, nor

do they consider the construction of optimal portfolios from these stocks. As a consequence,

they cannot provide any comparisons of portfolio–selection outcomes under Gaussian and non–

Gaussian stable assumptions.

The contributions of this paper are three–fold. First, we adopt the computationally feasible

methodology, introduced in Doganoglu and Mittnik (2004), to estimate the parameters of a class

of multivariate stable distributions where some moments may vary over time. We extend this

methodology here to a factor–GARCH model for multivariate asset returns, thus, taking care

of time varying moments. For this purpose, we exploit certain properties of multivariate stable

distributions which are governed by multi–factor structures. Specifically, we use the fact that

the spectral measure3 of a factor model has a particular form, which allows us to estimate the

distributional parameters along with the factor–association parameters. Second, we compare the

stable factor–GARCH model with a normal factor–GARCH to select optimal portfolios using

the mean–scale framework introduced by Fama (1965b, 1971).

The remainder of the paper is as follows. In Section 2 we present needful results on multi-

variate stable distributions. The stable factor–GARCH model is introduced in Section 3. While

Section 4 deals with the estimation of the stable factor–GARCH model, Section 5 presents the

portfolio optimization problem in the mean–scale framework. An empirical application of the
2 See, for example, Doganoglu and Mittnik (1998), McCulloch (1998), Mittnik, Doganoglu and Chenyao (1999),

Mittnik, Rachev, Doganoglu, and Chenyao (1999), and Nolan (1999).
3 The spectral measure defines the dependence structure of multivariate stable vectors (see Section 2 below).
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model in done in Section 6, while Section 7 concludes.

2 Multivariate Stable Random Vectors

Multivariate stable Paretian distributions—as their univariate counterparts—are commonly de-

fined by their characteristic functions as they lacking general closed–form expressions for both

the density and distribution function. The logarithm of the joint characteristic function of a

stable random vector Y = (Y1, . . . , Yq)′ is given by

lnΦα(θ) =

{
i(θ′µ)− ∫

Sq
|θ′s| (1 + i 2

π sign(θ′s)
)
ln |θ′s|Γ(ds), if α = 1,

i(θ′µ)− ∫
Sq
|θ′s|α (

1− i sign(θ′s) tan πα
2

)
Γ(ds), if α 6= 1,

(1)

where α ∈ (0, 2] denotes the characteristic exponent (or shape parameter) of the distribution; Γ

is a finite measure on the unit sphere, Sq, in Rq; and µ is the location vector in Rq.4

In the case of univariate stable Paretian distributions, i.e., q = 1 and Y being a scalar, the

sphere, S1, consists of the two points {−1, 1}. Denoting the probability masses at these points

by Γ(−1) and Γ(1), expression (1) reduces to

lnΦα(θ) = i θµ− |θ|α
[
Γ(1) + Γ(−1)− i sign(θ)

[
Γ(1)− Γ(−1)

]
tan

πα

2

]

and coincides with the characteristic function of a univariate stable variable, in which case we

write Y ∼ Sα(σ, β, µ), where

σ = [Γ(1) + Γ(−1)]1/α and β =
Γ(1)− Γ(−1)
Γ(1) + Γ(−1)

with σ, β, and µ representing the scale, skewness and location parameters, respectively. It

follows from the definition of β that if the spectral measure Γ is symmetric, then the scalar Y

is symmetrically distributed, i.e, β = 0 for Γ(1) = Γ(−1).

In the following, we use three properties of multivariate stable distributions to develop an

estimation method for a stable factor–GARCH model of asset returns, and subsequently, a

method to select “optimal” portfolios of these assets. These properties, which we reproduce in

the appendix for convenience, are adopted from Samorodnitsky and Taqqu (1994). Property

A establishes that a stable random vector with independent elements has a discrete spectral

measure over the unit sphere Sq. Given this property, it follows that although they may be

dependent, a linear transformation of a stable random vector with independent elements also

has a discrete spectral measure. The spectral measure of this linear transformation is easily

calculated, and established in Property B. Finally, Property C establishes parameters of the

univariate stable distribution by taking a linear combination of the elements of a stable random

vector with a given spectral measure. Naturally, this property proves useful in computing the

portfolio profit–loss distributions.
4 The subsequent discussion of the properties of the multivariate stable Paretian distributions closely follows

that of Samorodnitsky and Taqqu (1994).
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3 The Stable Factor-GARCH Model

A factor model establishes the dependence between the returns of different assets through a set

of common market factor.5 Each return series evolves as a linear combination of the factors

and an additive idiosyncratic noise process. Furthermore, we assume that the volatility of the

factor is state dependent. In particular, we assume that the scale parameter of the marginal

distribution of the factor follows a simple GARCH(1,1)–type process.

Formally, if there are N assets with returns Ri, i = 1, . . . , N , and factor returns F , then, in

any given period, the return of asset i is given by

Rit = µRi + bi(Ft − µF ) + εit, i = 1, . . . , N, (2)

where εit denotes the idiosyncratic disturbance for asset i; µF is the mean of the factor, Ft; and

bi reflects the systematic influence of the factor on asset i. In matrix notation, the N equations

in (2) can be written as

Rt = µR + b(Ft − µF ) + εt,

where Rt = (R1t, . . . , RNt)′, µR = (µR1 , . . . , µRN
)′, εt = (ε1t, . . . , εNt)′, and b = (b1, . . . , bN )′.

The factor, unlike individual assets, follows a state dependent process. We assume that the

volatility, which is proxied by the scale parameter, of the factor is influenced by its most recent

volatility and the magnitude of its most recent return. That is, we adopt the GARCH(1,1)–type

structure of Panorkska, Mittnik and Rachev (1995) for modeling the factor dynamics. Let σF,t

denote the scale parameter of the factor at time t. Then, the factor return evolves according to

Ft = µF + ϕt, ϕt = σF,tφt, (3)

where

σF,t = c0 + c1|Ft−1 − µF |+ c2σF,t−1 (4)

and φt is a standardized random disturbance with scale parameter equal to unity.

Our first extension to the standard factor model is the adoption of GARCH(1,1)–type dy-

namics for the factor returns. Under the usual normality assumption, the asset and factor

disturbances would follow independent univariate normal distributions, that is, with the present

notation, εit, φt ∼ S2(·, ·, ·). In our analysis, we relax the normality assumption by allow-

ing the asset and factor disturbances follow independent heavy-tailed stable distributions, i.e.,

εit, φt ∼ Sα(·, ·, ·), with 0 < α ≤ 2. Thus, in a symmetric setting, we generalize the normal

factor-GARCH model by simply relaxing a single parameter. That is, instead of imposing the

Gaussian restriction α = 2, we allow α ∈ (0, 2]. A second parameter is added, namely β ∈ [−1, 1],

if we allow for asymmetry.

Let εit = εit/σεi , εt = (ε1t, . . . , εNt)′ and φt = ϕt/σF,t. We make the following assumption

on the process generating (ε′t, φt)′:
5 The model and the methodology we develop below are easily extended to accommodate multiple factors. Since

we use a single factor in our empirical application, and exposition is simpler, we present a single factor model.
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Assumption 1 At each instant t, the random variables {ε1t, . . . , εNt, φt} are independent and

follow (univariate) standard-stable distributions6 with a common shape parameter 0 < α ≤ 2.

That is, εit ∼ Sα(1, βεi , 0) (i = 1, . . . , N), and φt ∼ Sα(1, βF , 0),

Notice that combining returns from equation (2) and the factor from equation (3) and rear-

ranging yields [
Rt − µR

Ft − µF

]
=

[
Σε σF,tb

0′ σF,t

][
εt

φt

]
. (5)

where Σε is a diagonal matrix whose elements are equal to the scale parameters of the idiosyn-

cratic shocks to each asset return, i.e.

Σε =




σε1 0 . . . 0

0 σε2 . . . 0
...

...
. . . 0

0 0 . . . σεN




.

Given Assumption (1), the model in (5) implies that the excess return on an individual asset,

Rit − µRi , is a linear combination of 2 independent standard stable random variables, namely

the the factor disturbance, φt, and the idiosyncratic disturbance, εit. However, note that the

linear combination changes at each time instant t following changes to σF,t.

4 Estimation

We will make use of Properties A and B to estimate the stable factor–GARCH model. In order

to facilitate discussion, let

At =

[
Σε σF,tb

0′ σF,t

]
,

Yt =

[
Rt − µR

Ft − µF

]

and

Xt =

[
εt

φt

]
.

Then (5) can be re–rewritten as Yt = AtXt with Xt having independent elements. We can now

state a result characterizing the spectral measure and the location vector for (R′
t, Ft)′.

Proposition 1 Let (R′
t, Ft)′ be a vector of asset and factor returns generated by the stable

factor–GARCH model (5). Moreover, let at
·k denote the kth column of the matrix At. Define

‖at
·k‖ = (

∑N+1
i=1 at

ik)
1/2, ιtk = at

·k
‖at
·k‖

and let δ(ιtk) denote Dirac–function of unit size at a point

6 A standard stable random variable has a location parameter that is equal to zero and a scale parameter that
is unity.
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with coordinates given by ιk. If Assumption 1 holds, then (R′
t, Ft)′ follows a multivariate stable

law whose spectral measure and location vector at time t is given by

Γt =
1
2

N∑

k=1

σα
εk

[
(1 + βεk

)δ(ιtk) + (1− βεk
)δ(−ιtk)

]
(6)

+
1
2
σα

F,t(1 +
N∑

j=1

b2
j )

α/2
[
(1 + βF ) δ

(
ιtN+1

)
+(1− βF ) δ

(−ιtN+1

)]
,

and

µ =

[
µR

µF

]
, (7)

respectively.

Proof. Since (ε′t, φt)′ is an (N + 1)× 1 vector of independent standard stable random variables,

Property A implied that its spectral measure has masses distributed on 2(N + 1) points on

the N + 1 dimensional unit sphere. It is easy to verify that (R′
t − µ′R, Ft − µF )′ has a spectral

density given by (6) and a zero location vector by applying Property B to (5). Thus, the spectral

measure and the location vector of (R′
t, Ft)′ are given by (6) and (7), respectively.

Since At is square matrix, it is possible to characterize the joint probability density function

of Yt in terms of the density of Xt. Due to the independence of its elements, vector Xt has the

joint density fX(xt) =
∏d

i=1 fXi(xit); and, if At is nonsingular—which is always the case for

non–degenerate distributions—then Xt = A−1
t Yt, and

fY (yt) = fX(A−1
t yt)|det(A−1

t )|, (8)

where det(·) denotes the determinant of a matrix. Hence, the evaluation of the joint multivariate

density of Yt only involves the computation of univariate stable densities, fXi(·). The inverse of

At is given by

A−1
t =

[
Σ−1

ε −Σ−1
ε b

0′ σ−1
F,t

]
(9)

and

det(A−1) =

((
N∏

i=1

σεi

)
σF,t

)−1

.

Assumption 1 implies that the vector (ε′t, φt)′ has independent components with standard–

stable densities fεit(·; α, βεi) and fφt(·;α, βF ). Given the return and factor realizations rt =

(r1t, . . . , rNt)′ and ft, for period t, the value of the joint density for the t-th observation, (r′t, ft)′,
is given by

fRt,Ft(rt, ft; θ) = fφ

(
ft − µF

σF,t
;α, βF

) N∏

i=1

1
σεi

fεit

(
rit − bi(ft − µF )− µR

σεi

; α, βεi

)

9



where θ = (α, β′ε, βF , µ′R, µF , b′, σ′ε, c0, c1, c2)′, with βε = (βε1 , . . . , βεN )′, collects all 3N + 6

parameters of the stable factor–GARCH model.

Given T observations and defining the N × T matrix r = (r1, . . . , rT ) and the 1× T vector

f = (f1, . . . , fT ), the joint density of r and f is given by

f(r, f ; θ) =
T∏

t=1

fRt,Ft(rt, ft; θ).

The maximum likelihood (ML) estimator of parameter vector θ is obtained by maximizing the

log–likelihood function

L(θ; r, f) =
T∑

t=1

log f(r, f ; θ) (10)

with respect to θ.

Even though feasible, maximization of the likelihood is not a trivial task. The univari-

ate stable Paretian densities lack a closed form expression. The most straightforward way to

compute the likelihood of an observation given parameters is to invert the Fourier integral re-

lating characteristic function and the probability density function. Mittnik, Doganoglu and

Chenyao (1999) have demonstrated that this can be accurately and efficiently accomplished by

using fast Fourier transforms. In this paper, we use the polynomial approximation developed

in Doganoglu and Mittnik (1998) based on the accurate fast Fourier transform computations of

Mittnik, Doganoglu and Chenyao (1999). For a sample size of 1000 and 10 assets, the maximiza-

tion of the log–likelihood function (10) is completed in about five minutes on an Intel Pentium 4

computer with a 2.4GHz cpu using MATLAB as the computing platform. Thus, ML estimation

of multivariate stable distributions can be performed in practical situations without hesitation.

Clearly, with dedicated and optimized routines and faster computers, the computational cost

can be reduced even further.

In our empirical application we use nine assets and one factor. After restricting all skewness

parameters to zero, we have a total of 23 parameters which we estimate via maximization of

(10). However, in many practical applications, the large number of parameters to be estimated,

namely, 3N + 6, may render the ML estimator infeasible, due to the computational complexity

that arises. An alternative and practically more feasible estimation strategy consists of a com-

bination of ordinary least squares (OLS) estimation of the bi coefficients and ML estimation of

the distributional parameters.7 The consistency of the OLS estimates of bi in this setting where

regressors are also α-stable distributed is established in Kurz-Kim, Rachev and Samorodnitsky

(2004). Also, for 1 < α ≤ 2, which appears to hold for financial applications, the mean vectors

µR and µF are consistently estimated by the sample means r̄t and f̄t, respectively. Then, the

ML estimator can be used to estimate the remaining 2N + 3 distributional parameters, that is,

σεi , σF , βεi , βF , and α.

7 Blattberg and Sargent (1973) show that the coefficients of a regression model with stable disturbances can be
consistently estimated via OLS. However, our setup differs from their’s in that we have a stochastic regressors
(see Doganoglu and Mittnik, 2002).
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5 Portfolio Selection and Risk Assesment

Because the standard mean–variance approach is not applicable to non–Gaussian stable port-

folios, Fama (1971) and Bawa and Lindenberg (1977) develop a mean–scale analogue. For the

expected portfolio return to be finite, they assume that α ∈ (1, 2]. This assumption is justified

on empirical grounds and will be adopted in the following.8

In solving the portfolio selection problem we make use of Property C, which allows us to

derive the parameters of the distribution of a linear combination of stable random variables.

Letting µp,t and σp,t, respectively, denote the expected mean and the scale parameter of the

portfolio return at time t, the set of efficient portfolios is derived by finding the weight vector

wt = (w1,t, . . . , wN,t)′ which solves the optimization problem:

max
wt

µp,t = w′tµ (11)

subject to

σp,t ≤ σ∗p,

w′t1N = 1,

and, if short–selling is not allowed,

wi ≥ 0, i = 1, . . . , N,

where σ∗p is the risk limit; and 1N denotes an N × 1 vector of ones. For α < 2, relationship

(14) in Appendix A is used to compute the portfolio scale, σp,t. Also in the normal case, when

α = 2, we use the stable Paretian representation of the normal distribution and use Property

B to compute the portfolio scale. Alternatively, one can use the portfolio standard deviation

σp,t = (w′tΣtwt)1/2, where Σt denotes the conditional covariance matrix implied by the normal

factor–GARCH model at time t instead of (14).

An important point to highlight here is that the multivariate distribution of the asset and

factor returns change in time due to state dependence in the evolution of the factor. Thus, an

investor would incorporate information up to time t to construct an estimate of the underlying

data generation process. Given parameter estimates, one can construct first a forecast of σF,t+1,

and then using the estimated model (5) and the result presented in Proposition 1 to form a

forecast of the distribution of asset and factor returns at time t + 1. One can then solve the

portfolio optimization problem in (11) using this forecast of the distribution to obtain the optimal

portfolio weights.

Given that investors base their decisions solely on expected risk–return considerations, the

decision problem can be placed in any suitable expected return–risk space. In the mean–variance

framework, the minimum–variance set reflects the minimum–risk portfolios—with risk being

measures in terms of the portfolio variance or standard deviation—that are associated with

feasible expected portfolio returns. To handle the stable case, Fama (1971) and Bawa and
8 If α ≤ 1, the analysis would have to be placed in a location–scale framework.
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Lindenberg (1977) adopt the mean–scale framework. Unfortunately, scale parameters of stable

distributions with different characteristic exponents cannot be meaningfully compared. There-

fore, the implications of different stable assumptions (here, α = 2 versus α < 2) are not easily

accessible in this framework.

In order to evaluate the impact of the distributional assumptions on the portfolio selection

problem, we first find optimal portfolio weights by solving (11), but then use the portfolio’s

Value–at–Risk (VaR) as a risk measure in comparing the normal model with the stable. In this

way, we can examine the consequences of alternative distributional assumptions in a common

risk–return setting. For a given target probability, λ, there is a strictly affine one–to–one corre-

spondence between the scale parameter, σp, and VaRλ–level (i.e., the negative 100×λ%–quantile)

of the stable profit–and–loss distribution.9

6 An Application to DAX Stocks

6.1 The Data

We consider portfolios constructed from a set of nine stocks belonging to the German DAX

index. The sample consists of T = 2273 daily observations of (dividend–corrected) returns on

the 9 stocks and the DAX, the market index, covering the period from January 2, 1996 to

December 30, 2004.

The returns of our sample’s assets are shown in Figure 1. The names of the stocks and various

summary statistics, are listed in Table 1. For all stocks and the DAX index the sample kurtosis

exceeds 3—the value compatible with the normal assumption—significantly at the 99% level.

For four out of the nine stocks, as well as for the DAX index, we find significant asymmetries

of the returns at the 95% level. The need of time varying moments is shown by the Ljung–Box

test statistics for the absolute and squared returns who are significant on the 99% level for all

assets.

6.2 Estimation results

Assuming that the dependence of the nine stock–return series can be captured by a single–

factor model, with the DAX being the underlying factor, we estimate the model parameters

under both the normal and (non–Gaussian) stable assumption. For the latter we estimate a

symmetric (β = 0 for all the asset return and factor return distributions) version for simplicity.

Using the entire sample both models, the normal model and the stable one, are estimated by

maximizing the log-likelihood given by (10).

The estimated tail index for the symmetric stable model is α̂ = 1.7312. The estimated

time varying scale for the factor is plotted in Figure 2. The upper part refers to the normal

model, while the lower part refers to the stable case. Note that we present the normal results
9 By equating the VaRλ–level with the (negative) 100 × λ%–quantile of the return distribution, the analysis

assumes an initial investment of unity and, thus, is independent of the size of the initial investment.
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Figure 1: Asset returns

as a stable distribution with α = 2. The relationship to the standard normal representation is

S2(σ, ·, ·) ≡ N(·, 2σ2).

Calculating the likelihood ratio test statistic

LRN,SS = −2(LN − LSS),

where LN (LSS) is the log-likelihood value of the normal (symmetric stable), we see that the

normal model is outperformed by the symmetric stable model at any reasonable level by a

likelihood ratio test statistic of LRN,SS = 2, 535.1.

6.3 Portfolio Selection Results

We use the estimated parameter values to solve the optimal portfolio problem for the the min-

imum risk (or minimum scale) portfolio (MRP) stated in (11), to calculate optimal portfolio

weights, wt, and obtain the corresponding portfolio mean and scale, µp,t and σp,t. Observe that

these value are in–sample value, i.e., they are based on parameter estimates for the sample

t = 1, . . . , T .

To overcome the problem of initial values we dismiss the first 273 observations and calculate

the optimal portfolio weights for t = 274, . . . , 2273, i.e., for the last 2000 observations of the

sample. The resulting portfolio weights for the different assets are given in Figure 3 for both dis-

tributional assumptions. We see that there are small differences between the resulting portfolio

13



Table 1: Summary Statistics
Name Mean Variance Skewness Kurtosis LB1(20) LB2(20)

Adidas 0.0494 4.9124 -0.0166 5.4481∗∗∗ 587.14∗∗∗ 449.14∗∗∗

Allianz -0.0111 5.8080 -0.0113 7.1145∗∗∗ 2025.96∗∗∗ 932.49∗∗∗

Altana 0.0601 5.8955 -0.4215∗∗∗ 12.9306∗∗∗ 446.61∗∗∗ 57.24∗∗∗

Bayer 0.0111 5.0559 0.8694∗∗∗ 25.3716∗∗∗ 670.18∗∗∗ 133.30∗∗∗

Continental 0.0668 4.3562 0.0768 6.2435∗∗∗ 592.52∗∗∗ 413.38∗∗∗

Deutsche Bank 0.0290 4.9642 -0.1034∗∗ 5.7079∗∗∗ 1641.64∗∗∗ 965.06∗∗∗

EON 0.0338 3.6195 0.1090∗∗ 5.0883∗∗∗ 1310.61∗∗∗ 669.66∗∗∗

Henkel 0.0370 3.7904 0.0447 6.4847∗∗∗ 1228.06∗∗∗ 774.42∗∗∗

Siemens 0.0372 5.7672 0.0815 5.1445∗∗∗ 1956.08∗∗∗ 669.43∗∗∗

DAX 0.0280 2.8057 -0.2214∗∗∗ 5.3899∗∗∗ 2823.56∗∗∗ 1926.52∗∗∗

LB1 (LB2) refers to the Ljung–Box test statistic for the absolute (squared) returns
∗ (∗∗,∗∗∗) indicates significance at the 90% (95%,99%) level

weights between the normal and the stable model. Even though the differences of the resulting

portfolios are small, the different distributional assumptions can effect risk assessment for these

portfolios considerably, as we will see below.

Value–at–Risk Coverage

Using µp,t and σp,t, we are able to calculate the Value–at–Risk of the MRP for different risk

levels λ. In our case, the VaR is defined as the λ-quantile VaRλ of the distribution of rp,t, i.e.,

either Sbα(rp,t; µ̂p,t, σ̂p,t) for the stable or S2(rp,t; µ̂p,t, σ̂p,t) for the normal model.

Using the actual portfolio return, rt, we define the hit (or violation) sequence of VaR viola-

tions by

It =





1, if rt < −V̂aRλ,t

0, if rt ≥ −V̂aRλ,t

and the empirical shortfall probability as

λ̂ =
1

T − 273

T∑

t=274

It

with V̂aRλ,t the VaR estimate for time t. Ideally, we have

It
i.i.d.∼ Bernoulli(λ).

There are three tests (see, Christoffersen (2003)) with which one can test this hypothesis:

1. Unconditional coverage test: Under the null we have f(It; λ) = (1 − λ)1−ItλIt . The

likelihood under the null of i.i.d. Bernoulli is

L(λ) =
T∏

t=274

(1− λ)1−ItλIt = (1− λ)T0λT1

14



1 750 1500 2273
0

0.5

1

1.5

2

2.5

3

3.5

Factor scale estimates, σ
F,t

 − normal case

1 750 1500 2273
0

0.5

1

1.5

2

2.5

3

3.5

Factor scale estimates, σ
F,t

 − stable case

Figure 2: Estimated factor scales σ̂F,t

while the observed likelihood value is given by

L(λ̂) =
T∏

t=274

(1− λ̂)1−It λ̂It = (1− λ̂)T0 λ̂T1 ,

where T0 and T1 are the number of zeros and ones observed in the hit sequence. The

likelihood ratio test statistic and the corresponding p-value are

LRuc = −2 ln[L(λ)/L(λ̂)] ∼ χ2
1 and Puc = 1− Fχ2

1
(LRuc).

Puc is the the probability of getting a sample that conforms less to the null hypothesis than

the sample observed. If Puc is below the specified significance level then we reject the null.

2. Independence test: Let Tij , (i, j = 0, 1) the number of observed pairs in the hit sequence

where j follows i, and define the probabilities πij = Prop(It = i and It+1 = j), i, j = 0, 1.

Their estimates are given by

λ̂01 =
T01

T00 + T01
λ̂11 =

T11

T10 + T11

λ̂00 = 1− λ̂01, λ̂10 = 1− λ̂11

Under the null the likelihood is given by

L(λ̂) =
T∏

t=274

(1− λ̂)1−It λ̂It = (1− λ̂)T0 λ̂T1 ;
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Figure 3: Portfolio weights for the MRP

the observed likelihood is

L(Λ̂) = (1− λ̂01)T00 λ̂T01
01 (1− λ̂11)T10 λ̂T11

11 .

The likelihood ratio test statistic and the corresponding p-value are given by

LRind = −2 ln[L(λ̂)/L(Λ̂)] ∼ χ2
1 and Pind = 1− Fχ2

1
(LRind).

3. Conditional coverage test: By combining the unconditional and the independence test

statistics we can test for conditional coverage. The resulting likelihood ratio test statistic

and the p-value are given by

LRcc = −2 ln[L(λ)/L(Λ̂)] = LRuc + LRind ∼ χ2
2 and Pcc = 1− Fχ2

2
(LRcc).

We examine the VaR predictions for three shortfall probabilities, namely λ = 0.01, 0.05, 0.10,

which are most commonly found in practice. The shortfall probabilities, λ̂ and the p-values for

the unconditional coverage, the independence and the conditional coverage test statistics are

reported in Table 2.

For the smaller risk levels, λ = 0.01, and λ = 0.05, the normal model underestimates the

unconditional coverage significantly. Only for the 10% risk level the unconditional coverage of

the VaR estimates are accurate for the normal model.

For the stable model the unconditional coverage on the 1% level is significantly overestimated,

i.e., we have a conservative VaR estimate, while for the 5% and 10% risk level the VaR estimates

are insignificantly different from the nominal level.
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Table 2: VaR coverage for the MRP: Unconditional Coverage, Independence, Conditional Cov-

erage
λ = 0.01 λ = 0.05 λ = 0.10

normal λ̂ 0.0205 0.0620 0.1015

Puc 0.0000 0.0174 0.8234

Pind 0.0580 0.0556 0.0438

Pcc 0.0000 0.0095 0.1278

stable λ̂ 0.0055 0.0555 0.1015

Puc 0.0270 0.2671 0.8234

Pind 0.7156 0.1204 0.0039

Pcc 0.0812 0.1617 0.0153

λ̂: empirical downfall probability. If the model underestimates (overestimates) the risk, the empirical downfall is

higher (smaller) than the VaR level, λ.

Puc: p-value for the unconditional coverage test statistic.

Pind: p-value for the independent test statistic.

Pcc: p-value for the conditional coverage test statistic.

p-values should be higher than the suggested significance level.

For both distributional assumptions we find significant dependency in the violations for the

10% VaR level. For the normal model we also find significant dependency on the 10% significance

level for the 1% and 5% VaR level, while for the stable model there is no dependency indicated.

Turning to the conditional coverage, we find the normal model unable to predict the VaR

correctly for the lower VaR levels. Only for the 10% VaR level the conditional coverage test

statistic is below the 10% significance level. For the stable model the conditional coverage

on the 1% VaR level is slightly significant on the 10% significance level, due to its conservative

unconditional coverage. The conditional coverage on the 5% VaR level is insignificantly different

from the nominal, while on the 10% VaR level the accurate unconditional coverage is vitiate by

the dependency of the violations.

“Cost” of Portfolio Optimization

To assess the impact of lowering the Gaussian assumption on the portfolio weights, we calculate

the overall variability of portfolio weight changes by

V =
T∑

t=2

∆w′t∆wt , (12)

where ∆wt = wt − wt−1. The values are VN = 0.9660 and VSS = 0.7197 for the normal and the

stable model, respectively, i.e., there is less fluctuation in the weights of optimal portfolio of the

stable model.

For translating the differences in portfolio weights into transaction cost equivalents, we cal-
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Figure 4: Transaction Cost Equivalents

culate

TCt =
N∑

i=1

|∆wt|

and the cumulative transaction cost equivalent as

CTCt =
t∑

τ=1

TCτ .

Figure 4 plots the resulting transaction cost equivalents. The upper figure refers to the

normal case, while the lower figure is for the stable model. Looking at the cumulative transaction

cost equivalents in Figure 5 it is obvious that the transaction costs for the stable model are lower

than for the normal model.

7 Conclusion

It is well established that returns on financial assets are generally heavy tailed. In practice, how-

ever, portfolio–selection strategies commonly assume joint normality for the underlying assets in

order to avoid difficulties in estimation and optimization. In this paper, we have proposed a prac-

tical approach to estimating the parameters of portfolios governed by a conditional multivariate

non–Gaussian stable distribution characterized by a GARCH–factor structure. It encompasses

the standard Gaussian case, gives rise to straightforward estimation procedures, and enables us

to derive optimal portfolio weights under stable GARCH–factor assumptions in a practically

feasible manner.
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Using a set of nine stocks belonging to the German DAX index, we find overwhelming sta-

tistical evidence against a Gaussian GARCH–factor model in favor of its stable (non–Gaussian)

generalization. The extremely significant improvement is achieved by relaxing only a single

model parameter, namely the characteristic exponent α, which determines the heavy–tailedness.

To assess the consequences for portfolio optimization we optimally rebalance the portfolio

over a period of 2,000 trading days. Examining the accuracy in VaR–based risk assessment

we find that the Gaussian GARCH–factor model leads to inadequate results for the practically

relevant 1% and 5% shortfall probabilities—both in terms of coverage and serial dependence of

VaR violations. The results are greatly improved when allowing returns to follow a stable non–

Gaussian distribution. Only for the 10% shortfall probability—in practice of little relevance—

the Gaussian model has an adequate coverage and, in fact, less serial dependence in the VaR

violations than the stable model.

Finally, we examined the cost of optimally rebalancing the portfolio under the two distrib-

utional assumption. Using the variability of the weight vectors over time and the cumulative

transaction volume as proxies, the Gaussian model—with 34% more variability and about 13%

increase in transaction volume—is less attractive for portfolio managers.

Clearly, transaction volume can only be a proxy for transaction cost. The latter depends on

the specific trading strategy adopted. To what extent one can use our results to develop such

strategies remains to be investigated.

Although we do not expect asset returns to exactly follow any stable distribution, our empir-

ical results indicate that the heavy–tailed stable GARCH–factor model provides a more realistic
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framework for dynamic portfolio optimization without giving up analytical tractability and prac-

tical implementability.
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A Some Useful Properties of Multivariate Stable Paretian Ran-

dom Vectors

The following property gives rise to a straightforward procedure for modeling asset–return vec-

tors governed by multivariate stable distributions.

Property A (Samorodnitsky and Taqqu, 1994, p. 70) The spectral measure associated with the

stable vector Y is composed of a finite number of atoms on the unit sphere, if and only if Y can

be represented by a linear transformation of independent stable random variables.

There is a natural relationship between Property A and the class of index models put forth

in portfolio theory; and it is the discreteness of the spectral measure that gives rise to the

estimation strategy we adopt.

The next property enables us to derive the spectral measure of a multivariate stable Paretian

vector in terms of the spectral measure of a stable random vector with independent elements.

Property B (Samorodnitsky and Taqqu, 1994, p. 69) Let X =
(
X1, . . . , Xp

)′ with Xk ∼
Sα(σk, βk, µk), k = 1, . . . p, be a vector of independent random variables with common char-

acteristic exponent α (but possibly different scale, skewness and location parameters); and let

A = {ajk}, j = 1, . . . , q, k = 1, . . . , p, be a real matrix. Then, the vector Y = (Y1, . . . , Yq)′ of

linear combination of the independent stable variables Xk, k = 1, . . . , p, given by

Y = AX,

is also stable and has the spectral measure

Γ =
1
2

p∑

k=1

(σ‖a·k‖)α

[
(1 + βk) δ

(
a·k
‖a·k‖

)
+ (1− βk) δ

(−a·k
‖a·k‖

)]
, (13)

where a·k denotes the k–th column of matrix A; ‖a·k‖ =
(∑q

j=1 a2
jk

)1/2
is the length of the

vector a·k, such that a·k/‖a·k‖ represents the coordinates of a point on the unit sphere Sq; and

δ(·) denotes the Dirac–delta function.

If the returns of the assets in a portfolio are characterized by a joint multivariate stable

distribution, the aggregate return of the portfolio is given by a linear combination of jointly

stable Paretian random variables.

Property C (Samorodnitsky and Taqqu, 1994, p. 67) Let w = (w1, . . . , wq)′ ∈ Rq denote

a vector of weights. Then, any linear combination w′Y of the components of a stable vector

Y = (Y1, . . . , Yq)′ with spectral measure Γ(ds) and location vector µ, follows the (univariate)

stable distribution w′Y ∼ Sα(σ(w′Y ), β(w′Y ), µ(w′Y )) with

σ(w′Y ) =

(∫

Sq

|w′s|αΓ(ds)

)1/α

, (14)

β(w′Y ) =

∫
Sq
|w′s|αsign(w′s)Γ(ds)∫
Sq
|w′s|αΓ(ds)

, (15)

µ(w′Y ) = w′µ. (16)
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This result allows us to express the portfolio–return distribution as a function of the multi-

variate stable distribution of the underlying vector of asset returns.

24



CFS Working Paper Series: 
 

No. Author(s) Title 

2006/24 Toker Doganoglu 
Christoph Hartz 
Stefan Mittnik 

Portfolio Optimization when Risk Factors are 
Conditionally Varying and Heavy Tailed 

2006/23 Christoph Hartz 
Stefan Mittnik 
Marc S. Paolella 

Accurate Value-at-Risk Forecasting Based on the 
(good old) Normal-GARCH Model 

2006/22 Dirk Krueger 
Hanno Lustig 
Fabrizio Perri 

Evaluating Asset Pricing Models with Limited 
Commitment using Household Consumption Data 

2006/21 Juan Carlos Conesa 
Sagiri Kitao 
Dirk Krueger 

Taxing Capital? Not a Bad Idea After All! 

2006/20 Annamaria Lusardi 
Olivia S. Mitchell 

Baby Boomer Retirement Security: The Roles of 
Planning, Financial Literacy, and Housing Wealth  

2006/19 Carol C. Bertaut 
Michael Haliassos 

Credit Cards: Facts and Theories 

2006/18 Dirk Krueger 
Alexander Ludwig 

On the Consequences of Demographic Change for 
Rates of Returns to Capital, and the Distribution of 
Wealth and Welfare  

2006/17 Franklin Allen 
Elena Carletti 

Mark-to-Market Accounting and Liquidity Pricing 

2006/16 Erik Hurst 
Arthur Kennickell 
Annamaria Lusardi 
Francisco Torralba 

Precautionary Savings and the Importance of 
Business Owners 

2006/15 Arthur Kennickell 
Annamaria Lusardi 

Disentangling the Importance of the Precautionary 
Saving Motive 

 
Copies of working papers can be downloaded at http://www.ifk-cfs.de  




