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1 Introduction

According to Coffee (2002), increasing globalisation and improved technology will lead

to a decay in the number of securities exchanges around the world. Small national

exchanges will lose their share in trading to large international exchanges, which pro-

vide a more efficient trading environment. Carpentier and Suret (2007) examine this

development for the Canadian stock exchanges with respect to the U.S. markets. They

report a rapidly growing share of U.S. markets in trades of Canadian interlisted stocks,

up to the point where interlisted stocks are absorbed by the foreign market and delisted

on the home market. These developments foreshadow small national stock exchanges

as markets for illiquid stocks that failed to attract investors on the large markets (Gaa,

Lumkin, Ogrodnik, and Thurlow (2002)). Thus, within the context of international

cross-listed stocks, it is of paramount interest for national stock exchanges to maintain

not only their share in trading, but also to remain the dominant market in regard to the

price discovery process. The competition among smaller national and the giant U.S.

markets for the leadership in price discovery of interlisted stocks has therefore grown

immensely and has stirred up a growing field of research.

Grammig, Melvin, and Schlag (2005) and Phylaktis and Korczak (2007) apply the Has-

brouck (1995) methodology to examine the share in price discovery (information share)

of home and foreign market of interlisted stocks from various countries and find that

the home market evolves as the dominant trading venue. According to their results

trading on the NYSE to some extent contributes to price discovery, but mainly takes

place to offset arbitrage opportunities. We argue that this evidence might be mislead-

ing, since it neglects some important features of high frequency stock return data, most

importantly the presence of microstructure noise.

The methodological contribution of this paper is a modification of the Hasbrouck (1995)

approach that yields unique information shares and is not distorted by microstructure

noise. We connect two strands of financial research, namely studies concerned with

international price discovery of cross-listed stocks1 and those concerned with market

microstructure noise and its impact on financial volatility estimators.2 As outlined

by these studies, return data of financial time series sampled at very high frequencies

are subject to market microstructure noise arising from different sources, such as mar-

ket frictions, the discreteness of price changes, properties of the trading mechanism

or bid-ask bounces. Since the Hasbrouck (1995) information shares are determined

1Recent studies concerned with the price discovery process of interlisted stocks include Eun and Sab-
herwal (2003), Grammig, Melvin, and Schlag (2005), Hupperets and Menkveld (2002), and Phylaktis
and Korczak (2007).

2Among other studies Bandi and Russell (2008), Hansen and Lunde (2005), and Aı̈t-Sahalia, Mykland,
and Zhang (2005) examine the link between microstructure noise and volatility estimators in financial
time series.
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by the decomposition of the efficient price variance, i.e. the variance of the common

stochastic trend in a cointegrated system, they are affected by the presence of market

microstructure noise. At lower frequencies, at which the microstructure noise problem

is less severe, the applicability of the Hasbrouck (1995) methodology is limited. Since

the Cholesky decomposition applied within this framework is not able to fully iden-

tify structural shocks in a cointegrated vector autoregressive system, the methodology

delivers merely upper and lower bounds for information shares and empirical analysts

face a dilemma: on the one hand, in the case of relatively low frequencies, such as a

few minutes, the bounds diverge considerably due to the increasing contemporaneous

correlation inherent in innovations of the price series. Consequently, the commonly re-

ported midpoint as a proxy for the true information share is rather unreliable. On the

other hand, using high frequency data the estimated information share is very likely to

be distorted by the substantial amount of microstructure noise in the data.

Yet, the modification of the Hasbrouck (1995) approach presented in this paper yields

unique information shares and thus allows a reduction of the amount of microstructure

noise by choosing a lower sampling frequency. Our methodology is based on a recent

contribution by Lanne and Luetkepohl (2005), who propose to rely on distributional as-

sumptions for identification of structural shocks in a VAR framework. It is particularly

appealing within the context of international cross-listed stocks, as stock return data

generally exhibit a leptokurtic distribution and the application of a mixture normal dis-

tribution seems appropriate to model non-normal price innovations. Moreover, rather

than arbitrarily choosing a sampling frequency as done by previous studies, we con-

duct preliminary analysis of realized volatility to determine the appropriate sampling

frequency. As a result, we deliver information shares, which are much more accurate,

since they are neither approximated by midpoints of possibly extremely large bounds,

nor are they based on data containing a substantial amount of microstructure noise.

We empirically examine Canadian stocks, which are traded on the Toronto Stock Ex-

change (TSE) and cross-listed on the New York Stock Exchange (NYSE). Our results

show that the role of the NYSE within the price discovery process is underestimated by

standard methods. We also find a much smaller cross-sectional variation of information

shares among our sample stocks than detected by previous studies, indicating that a

market’s contribution to the price discovery process is determined by market charac-

teristics rather than stock specific factors. Thus, improving market efficiency seems to

be the major key for national stock exchanges to maintain their dominance in the price

discovery process of interlisted stocks.
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The remainder of the paper is organized as follows: section 2 outlines the main fea-

tures and caveats of standard methods and discusses the issue of microstructure noise

within the concept of price discovery in internationally cross-listed stocks. We also

show simulation evidence on the bias in information shares induced by microstructure

noise. Section three describes the data and sampling details. Section four explains the

methodological details on our modified approach, which uses distributional assumptions

for identification. Section five presents the empirical results and their discussion, while

section six concludes the paper.

2 Price Discovery, Information Shares, and Microstruc-

ture Noise

2.1 Standard Methods and Their Drawbacks

In the current literature concerned with international price discovery there exist two

prevalent methodologies. A number of studies, including Eun and Sabherwal (2003)

and Phylaktis and Korczak (2007), measures a market’s contribution to the price dis-

covery process by the common factor component weight as proposed by Gonzalo and

Granger (1995). Within this approach, price discovery is regarded as a pure error cor-

rection process, and a market’s information share is based on its relative adjustment to

deviations from the equilibrium. The Gonzalo and Granger (1995) (GG) methodology

has been criticized on the grounds that within their model the efficient price does not

necessarily follow a martingale and therefore questions the economic relevance of the

model (Hasbrouck (2002), Baillie, Geoffrey, Tse, and Zabotina (2002), De Jong (2002)).

The second methodology was developed by Hasbrouck (1995) and decomposes the vari-

ance of the common stochastic trend in a cointegrated system. Information shares are

then defined as the relative contribution of an innovation in each price series to the

variance of the common stochastic trend. Thereby, the dynamics of the system, which

are neglected by the Gonzalo and Granger (1995) approach, are taken into account.

The Hasbrouck (1995) information shares are based on the concept of one efficient

price, which implies that log prices of stocks traded simultaneously on home and foreign

market are cointegrated with cointegration vector β = (1,−1)′. Deviations from the

underlying efficient price are only transitory and offset by arbitrage. The evolution of

home (ph) and foreign (pf ) log price is described by a bivariate Vector Error Correction

Model (VECM):

∆yt = αβ′yt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + ut, (1)
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where yt = (ph
t , p

f
t )′. Γ1 to Γp−1 are 2×2 parameter matrices. The vector α = (αh, αf )′

contains the coefficients associated with the speed of adjustemt of each price series to

deviations from the equilibrium and αβ′yt−1 is usually referred to as the error correction

term. Within the traditional framework ut is vector white noise with zero mean and

nonsingular covariance matrix Σu.

Within the error correction (GG) approach, the contribution of each market to price

discovery is measured by the relative adjustment of the market to deviations from the

equilibrium price.

Adjh =
αh

αh + |αf |
(2)

Adjf =
|αf |

αh + |αf |
. (3)

The idea is that the market that adjusts less evolves as the market leading the price

discovery process.

In order to derive the Hasbrouck information shares, structural shocks in the system

have to be identified. These structural shocks are assumed to be uncorrelated zero

mean, unit variance random variables εt(̃0, I2) which are related to the reduced form

innovations ut by

ut = Bεt. (4)

The covariance matrix of the reduced form innovations Σu is given by Σu = BB′ and

the long-run effects of structural shocks in a cointegrated system can be calculated as

ΞB with

Ξ = β⊥[α′

⊥
(IK −

p−1∑

i=1

Γi)β⊥]−1α⊥, (5)

where Ξ =

(
ξh ξf

ξh ξf

)
. α⊥ and β⊥ represent the orthogonal complements of α and β

(see Johansen (1995)). Since Σu cannot be assumed to be diagonal, i.e., the reduced

form innovations are contemporaneously correlated, the matrix B is underidentified.

Within the traditional Hasbrouck (1995) approach this lack of identification is resolved

by the Cholesky factorization of Σu. Defining B = C, where C denotes the lower

triangular matrix derived from the Cholesky decomposition, structural shocks can be

identified. The triangular structure of C implies that the ordering of the variables (i.e.

markets) within the system is crucial. According to Hasbrouck (1995), the information

share of market ordered jth place within the Cholesky ordering is given by
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ISj =
[ΞC]2j
[ΞΣuΞ]

. (6)

Due to the arbitrary ordering of markets in the Cholesky decomposition the informa-

tion shares are not unique. Commonly, the system is re-estimated with permutating

order of the variables, which yields upper and lower bounds for each information share.

The average between these bounds is used as a proxy for the true information share.

Yet, these bounds can diverge considerably, as the contemporaneous correlation in the

innovations tends to increase with a decreasing sampling frequency. 3

.

Figure 1: Estimated information shares for different frequencies
The solid lines denote the upper and lower bound for the NYSE information share of ABY as well as
the midpoint (dotted line) for increasing sampling frequency.

To illustrate the dependence of the Hasbrouck (1995) information shares on the sam-

pling frequency, Figure 2.1 displays the upper and lower bound of the U.S. market in-

formation share as well as the associated midpoint for the Canadian NYSE interlisted

stock Abitibi Consolidated Inc. (ABY), estimated at different frequencies.4 As clearly

3Using a still relatively high frequency of one minute Phylaktis and Korczak (2007) find a sample mean
of 6.4% for the lower and 24.6% for the upper bound for their 64 sample stocks. However, sampling at
intervals of 5 minutes as in the case Hupperets and Menkveld (2002) already leads to extremely large
bounds for most of their Dutch stocks

4Details on the data can be found in Section 4.
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depicted by the graph the bounds diverge considerably as the sampling frequency de-

creases. At low sampling frequencies the average over the bounds, converges to 0.5,

i.e., to the point, where price discovery is divided evenly between the markets.

In order to avoid divergence of the information share bounds Grammig, Melvin, and

Schlag (2005) sampled their data of British, Canadian, French and German stocks

cross-listed on the NYSE at a high frequency of 10 seconds. However, they already

mention the issue of potential bias arising from market microstructure noise at such

fine frequencies.

2.2 Microstructure Noise in the Context of Price Discovery

As outlined by recent studies, including Bandi and Russell (2008), Hansen and Lunde

(2005), and Äıt-Sahalia, Mykland, and Zhang (2005) microstructure noise can induce

a considerable bias of financial volatility estimator, if the data is sampled at a high

frequency. Since the Hasbrouck information shares are based on the decomposition of

the variance of the common stochastic trend, they are likely to be distorted as well.

However, microstructure noise is mainly an issue at high frequency data. The crucial

point lies in the accumulation of the noise component when the number of sampling

intervals increases.

The observed log price in home and foreign market is assumed to consist of two com-

ponents: the efficient underlying price and microstructure noise part that arises from

different sources such as market frictions, bid-ask bounces or properties of the trading

mechanism:

p̃ji = pji + ηji, (7)

where pji denotes the unobservable efficient log price in period j on day i and ηji

gives the log microstructure noise component. Calculating continuously compounded

intra-day log returns results in

r̃ji = rji + εji, (8)

where r̃ji denotes the return in period j of day i which evolves as the sum of the efficient

return rji and the microstructure noise component εji.

The distortion of the estimated variance induced by microstructure noise at high fre-

quencies becomes obvious when we construct the realized variance estimator that is
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simply the sum of squared observed log returns:

R̂V i =

M∑

j=1

r̃2ji =

M∑

j=1

r2ji +

M∑

j=1

ε2ji + 2

M∑

j=1

r2jiε
2
ji. (9)

While at very low frequencies the accumulated noise component, the second term on

the right hand side in Equation (9), is still negligible, it dominates convergence of the

estimator at very high frequencies, i.e. with an increasing number of sampling intervals

M . The accumulation of microstructure noise and the bias it induces can be illustrated

in a volatility signature plot, in which the realized volatility estimator is calculated for

a range of frequencies. Figure 2.2 shows the volatility signature plot of home and U.S.

Figure 2: Volatility signature plots of TSE and NYSE log returns for ABY
The graph shows the realized variance estimator dRV i =

PM

j=1
r̃2ji =

PM

j=1
r2ji +

PM

j=1
ε2ji +2

PM

j=1
r2jiε

2
ji

for log home and foreign market returns one of our sample stocks (ABY) calculated for a range of
frequencies. It clearly depicts the increasing upward bias in the estimator induced by microstructure
noise.

market return for our sample stock ABY. The graph clearly depicts the increasing bias

in the variance estimator at extremely fine sampling frequencies. At frequencies higher

than two minutes, the realized variance estimator increases sharply, indicating that

the data contains a considerable amount of microstructure noise. Therefore, in order

to avoid distortion, a lower sampling frequency should be chosen, at which the noise

component does not dominate the underlying efficient return variance. Since sampling

at lower frequencies means a loss of observations, which increases the variance of the

estimator, the appropriate sampling frequency entails a trade-off between the distortion

7



by noise and the efficiency of the estimator. According to the volatility signature plot of

ABY, a two minute sampling frequencies is a good choice to reduce the contamination

by microstructure noise without discarding two much observations. We conjecture that

the same arguments apply for the estimation of information shares, as we argue that

these are affected by microstructure noise as well.

In order to study this effect of microstructure noise on information share estimates we

conduct a Monte Carlo study. The idea is to simulate the true price discovery process in

home and foreign market using a parameterized version of the bivariate error correction

system in Equation (1) and then distort the true prices with microstructure noise. In

the basic experimental design we assume symmetry of home and foreign market. This

means that the adjustment coefficients are given by αh = −αf and that the short

run parameter matrices Γj (j=1,2,..., p-1) are symmetric. Parameter values are chosen

to match typical numbers found in our sample. The fundamental innovations ǫht and

ǫft are normally distributed with zero mean and identical standard deviation σǫ and

contemporaneously uncorrelated. We choose σǫ = 0.0002 which implies an annualized

log return standard deviation of 20% and a sampling frequency of 10 seconds.5 This

data generating process ensures a 50% Hasbrouck information share of home and foreign

market. We also study two other experimental setups. The asymmetric design assumes

a 30:70 distribution of home and foreign market information share. The monopolistic

setup implies that 100% of price discovery takes place in the foreign market. In each

design we generate true home and foreign market price series with 100,000 observations

and then add independent microstructure noise as suggested by Equation (7). Denote

by ph
t the simulated true home market log price and by pf

t the simulated true foreign

market log price. ”Observed” log prices are then generated by

p̃h
t = ph

t + ηh
t (10)

p̃f
t = pf

t + ηf
t .

The microstructure noise components ηh
t and ηf

t are drawn from independent zero mean

normal distributions with variances σ2

ηh and σ2

ηf , respectively. Along with the noise-

free reference case, we consider seven scenarios in which we vary the variances of the

microstructure noise components. In scenarios one, two and three, only the foreign

market is subject to microstructure noise. In scenarios four to seven, microstructure

noise affects prices in both markets. While the variances of home and foreign noise

5With 265 trading days per year and 10 trading hours per day this implies a sampling frequency of 10
seconds since

√
265 · 10 · 360 · σǫ ≈ 0.2
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component are identical in scenario four, σ2

ηf exceeds σ2

ηh in scenarios five, six and

seven6. Standard deviations of foreign and home microstructure noise components

are multiples of the fundamental innovation standard deviation. In scenario six, for

instance, we assume σηh = σǫ and σηf = 4σǫ.

The simulation is replicated 500 times. In each replication the model parameters are

estimated based on the true and noisy price series, and information shares are computed

for base and noise scenarios. After each replication, the information shares are stored

along with the estimates of adjustment coefficients, long run impact coefficients, and

residual variances and correlations. Table 1 reports means and standard deviations of

these statistics computed over 500 replications.

The first row in Table 1 reports the midpoint of upper and lower bound of the Hasbrouck

information shares resulting from permuting home and foreign market in the Cholesky

decomposition of the residual covariance matrix. In the base scenario, upper and lower

bound are identical, since home and foreign market innovations are contemporaneously

uncorrelated. However, in the microstructure noise scenarios, upper and lower bound

of the information shares diverge. This is due to the fact that microstructure noise

introduces spurious residual correlation (see last row of Table 1).

The conclusive evidence from Table 1 is that microstructure noise severely biases infor-

mation share estimates. Consider, for instance, scenario 3 in which the home market is

noise-free and the foreign market microstructure noise standard deviation is two times

that of the fundamental innovation’s standard deviation. The upper bound estimate of

the foreign market information share is 24 %, less than half of its true value. Further-

more, the small standard errors indicate that microstructure noise does not increase

the variance of the estimates but substantially biases them.

When both markets are subject to microstructure noise (scenarios four to seven), bi-

ased estimation shares result when the amount of microstructure noise differs between

markets. In scenario 6, in which the difference between noise variances is biggest

(σηf = 4σηh), the downward bias of the foreign market’s information share is most

pronounced. The estimated information share is only 12 %, less than one quarter of its

true value.

The results show that microstructure noise biases all components of the Hasbrouck in-

formation share. In particular, the adjustment coefficient estimate of the noise-affected

foreign market is always upward biased. As a consequence, the ratio αf/(αf + |αh|)

becomes severely biased away from its true value of 50 %. In scenario 6, we obtain a

value equal to 89.2 %, indicating falsely that the foreign market adjusts much more to

6This setup is suggested by the volatility signature plot in Figure 2. The volatility signature plots for
our sample of Canadian stocks suggest that the amount of microstructure noise differs between US
market and TSE, and that it is typically higher in the US.
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scenario base 1 2 3 4 5 6 7
σηh/σηf 0/0 0/0.5σǫ 0/σǫ 0/2σǫ σǫ/σǫ σǫ/2σǫ σǫ/4σǫ 2σǫ/4σǫ

ISf (midpoint) 50.0 45.7 36.3 19.9 50.0 30.4 12.0 23.7
ISf (lower) 50.0 43.8 32.7 16.2 44.3 24.9 8.9 18.6

(0.91) (0.86) (0.75) (0.51) (0.76) (0.53) (0.32) (0.41)
ISf (upper) 50.0 47.6 39.9 23.6 55.7 36.0 15.1 28.9

(0.92) (0.87) (0.82) (0.63) (0.75) (0.64) (0.44) (0.49)
ah -0.20 -0.19 -0.17 -0.11 -0.29 -0.20 -0.09 -0.20

(0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
af 0.20 0.24 0.33 0.55 0.29 0.50 0.77 0.68

(0.002) (0.003) (0.003) (0.005) (0.003) (0.004) (0.005) (0.005)
af/(af + |ah|) × 100 50.0 55.9 66.9 83.3 50.0 71.1 89.2 77.1

(0.44) (0.43) (0.39) (0.27) (0.41) (0.31) (0.20) (0.25)
ξh 0.53 0.53 0.57 0.66 0.34 0.45 0.55 0.42

(0.005) (0.005) (0.004) (0.004) (0.003) (0.002) (0.002) (0.002)
ξf 0.53 0.42 0.28 0.13 0.34 0.18 0.07 0.12

(0.005) (0.004) (0.003) (0.002) (0.003) (0.002) (0.001) (0.001)
σh

ǫ × 1000 0.20 0.20 0.20 0.21 0.31 0.31 0.32 0.50
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

σf
ǫ × 1000 0.20 0.23 0.31 0.48 0.31 0.48 0.86 0.87

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
ρǫf ǫh 0.00 0.04 0.08 0.09 0.11 0.12 0.10 0.12

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Table 1: Effects of microstructure noise on information share estimates. Symmetric design.

We simulate home and foreign market log prices ph
t and pf

t from a bivariate error correction model

„
∆ph

t

∆pf
t

«
=

„
αh

αf

«
(ph

t−1 − p
f
t−1) + Γ1

„
∆ph

t−1

∆pf
t−1

«
+ Γ2

„
∆ph

t−2

∆pf
t−2

«
+

0
@
ǫht
ǫ
f
t

.

1
A

Symmetry of home and foreign market is imposed by setting αf = −αh = 0.2, Γ1 =

„
−0.05 0.1
0.1 −0.05

«
and Γ2 =

„
−0.05 0.05
0.05 −0.05

«
. The innovations ǫf and ǫf

are contemporaneously and serially uncorrelated mean zero normally distributed random variables with standard deviation σǫ = σf
ǫ = σh

ǫ = 0.0002. According
to Equation (5), the true long run impact of home and foreign market innovations is ξh = ξf = 0.53 and the true information share of the foreign market (ISf )
is 50 %. The simulated true prices are disturbed by additive independent microstructure noise, p̃h

t = ph
t + ηh

t and p̃h
t = ph

t + ηh
t . The noise components ηh

t and
ηh

t are mean zero uncorrelated random variables with standard deviations σηh and σηh . The second row shows how microstructure noise standard deviations
σηh and σηh are varied as multiples of the fundamental innovation standard deviation σǫ. The simulation is replicated 500 times with n = 100, 000. In each

replication the model parameters are estimated based on the true and noised price series. Foreign market information shares (ISf ) and price impact coefficients
ξh and ξf are computed as outlined in Equations (2) and (6). The table reports mean and standard deviation (in parentheses) of the estimates computed over
the 500 Monte Carlo replications. ISf (midpoint) denotes the average of the upper and lower bound of the foreign market information share which result from
permuting the order of home and foreign market in the Cholesky decomposition of the residual variance covariance matrix. The estimate of the correlation of
ǫf and ǫf is reported in the last row.
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a violation of the law of one price than the home market. The estimates of the long run

impacts of the market innovations (ξh and ξf ) also become biased by microstructure

noise. The true long run impact of a one unit innovation in either market amounts to

0.53. However, in scenario 6 the estimate of the foreign market impact is reduced to

0.07.

The results for the alternative experimental designs reported in Tables A-1 and A-2 (see

Appendix) confirm these findings. The market with limited or even zero contribution

can well be falsely attributed a considerable amount of price discovery if the market

which truly contributes to price discovery is subject to microstructure noise.

Estimating information shares of interlisted stocks using high frequency data thus can

lead to wrong conclusions, especially if the amount of microstructure noise differs be-

tween home and foreign market. Given the different designs of international stock

markets, such a scenario seems to be the rule rather than the exception. Consider a

home market stock exchange which, by lowering operational costs and providing easy

market access, succeeded in attracting liquidity suppliers who provide small spreads and

ample depth. Microstructure noise in such a liquid market tends to be small. One may

think of an European limit order book market like Euronext. Now consider a foreign

market with an arcane trading technology involving specialists, order books hidden to

the public, a trading crowd, huge quoted spreads, delays in reporting prices et cetera.,

in short, a market structure like NYSE in which we expect the observed prices to reflect

a significant amount of microstructure noise. The contributions to price discovery of

interlisted stocks in such an environment may be considerable. However, as a result of

microstructure noise, the foreign market information share would be underestimated.7

The estimation of information shares within the traditional Hasbrouck (1995) approach

at high frequencies is therefore misleading. As outlined in section 2.1 estimation at

lower frequencies, which might reduce the bias due microstructure noise, also yields

inaccurate results brought about by the non-uniqueness of the estimators as the bounds

for information shares diverge considerably.

7The scenario of an operationally efficient and liquid home market, and a microstructure noised foreign
market describes to some extend the situation faced by Grammig, Melvin, and Schlag (2005). They
report - using data sampled at 10 second frequency - that the vast majority of price discovery of
three German stocks takes place at the home market which was (in 1999) efficiently organized as an
electronic limit order book. The NYSE, where the three stocks were interlisted, had only a marginal
information share. The simulation results, however, suggest that the conclusion that the home market
leads price discovery should be taken with a grain of salt.
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3 Identifying and Estimating Unique Information Shares

We suggest a solution to the dilemma one faces within the traditional Hasbrouck ap-

proach by proposing an alternative identification method that yields unique information

shares. As a result, it is applicable to data sampled at lower frequencies, at which the

microstructure noise bias is less prevalent. Following Lanne and Luetkepohl (2005),

we identify structural shocks in a cointegrated system by modelling the structural in-

novations as a mixture of two normal distributions. The commonly fat tailed and

peaked distributions found in stock returns renders this assumption particularly plau-

sible. Within this framework outliers in return distributions could be generated by a

distribution which is associated with a higher volatility than those of the remaining

observations, so that there are different regimes operating in the same sample period

(Lanne and Luetkepohl (2005)).

Starting from the reduced form VAR of order p that can be derived from the VECM

given in Equation (1)

A(L)yt = ut (11)

with

A(L) = IK − αβ′L− Γ1∆L− . . .− Γp−1∆L
p−1. (12)

Rather than modelling the structural shocks ut as a linear combination of idiosyncratic

standard normal innovations as in Equation (4) we now define

ut = Wwt, (13)

where W denotes a (2 × 2) non-singular parameter matrix. And as outlined above wt

is a mixture of two normal random vectors:

wt =




e1t ∼ N(0, I2) with probability γ

e2t ∼ N(0,Ψ) with probability 1 − γ.
(14)

Ψ is a diagonal matrix, with positive elements ψ1 and ψ2. If ψ1 = 1, the innovations

in the home market price series would follow a normal distribution and if ψ1 = ψ2 = 1,

innovations in both price series are normal. So the approach outlined in the previous

section is actually a special case of the mixture model setup. γ denotes the mixture

probability, so 0 < γ < 1. The covariance matrix Σw is then given by γI2 + (1 − γ)Ψ.

12



Since ut = Bεt = Wwt we have

Σu = WΣwW
′ = BB′. (15)

The matrix B is then given by B = WΣ−0.5
w . As Σw and W can be estimated, the

matrix B containing the contemporaneous correlations can be derived and the system

is locally identified by the distributional assumptions concerning wt if and only if all

elements ψj of Ψ are distinct (For a proof we refer to Lanne and Luetkepohl (2005)).

Consequently, no prior restrictions concerning the ordering of the variables as with the

Cholesky decomposition are necessary.

After identification of the matrix B unique information shares result as

ISij =
[ΞB]2ij
ΞBB′Ξ ii

. (16)

Parameter estimation can be conducted by Maximum Likelihood, since a mixture nor-

mal distribution is assumed for the innovations wt for which the density is

φw = γ(2π)
n
2 exp(−

1

2
wtw

′

t)

+ (1 − γ)(2π)
n
2 det(Ψ)−

1

2 exp(−
1

2
w′

tΨ
−1wt).

For convenience constant terms are neglected. The conditional distribution of yt is

ft−1(yt) = γ detW−1

× exp(−
1

2
(A(L)yt)

′(WW ′)−1(A(L)yt))

+ (1 − γ) det Ψ−
1

2 det(W )−1

× exp(−
1

2
(A(L)yt)

′(WΨW ′)−1A(L)yt).

The log likelihood given by

L =

T∑

t=1

logft−1(yt) (17)

can be maximized by standard nonlinear optimization algorithms.
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4 Data and Sampling

The data includes bid and ask quotes for 56 Canadian stocks, which are traded on the

Toronto Stock Exchange and on the New York Stock Exchange simulatneously. The

sampling period ranges from 1st January to 31 of March 2004. The New York data are

from the TAQ data set available at the NYSE. Toronto quote data were obtained from

the Equity Trades and Quotes data set from the Toronto Stock Exchange. The data

also includes indicative quotes for the intradaily exchange rate as posted by Reuters

from Olsen Data in Zurich .

Although the trading times of the TSE and the NYSE coincidence, only the first two

hours of trading (9.30 am to 11.30 am) are used for estimation in order to avoid diurnal

effects (see Madhavan, Richardson, and Roomans (1997)). Further NYSE prices were

converted to Canadian dollars. Results do not change substantially if the estimation

is done with US dollar converted Canadian prices. We conducted preliminary analysis

using volatility signature plots to determine the appropriate sampling frequency. A two

minute sampling frequency seems to be the optimal trade-off between the bias induced

by microstructure noise and efficiency of the volatility estimator. We also took care to

exclude overnight returns from the data set.

In order underline the plausibility of the mixture normal assumption outlined in the

previous section we examine Kernel density plots of our sample stocks. Figure 4 shows

the Kernel density plots for an exemplary stock (ABY). It clearly depicts the leptokurtic

distribution of the return data in both markets. We also conducted Jarque-Bera tests

for all our sample stocks and find that the null of normal distributed returns is rejected

at any common level of significance.

Figure 3: Kernel density plots of TSE and NYSE log returns of ABY
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5 Results and Discussion

Within the bivariate VECM, we a priori estimate the vector of adjustment coefficients

α with linear least squares. The optimal number of lags was chosen according to the

Schwartz Criterion and ranges from one to five lags. We also test for the cointegration

rank of the system by application of Johansen Trace and Maximum Eigenvalue statis-

tics. Results clearly support the existence of one cointegration relation for all stocks.

The normalized cointegration vector is fixed to β = (1,−1). Yet, including the esti-

mation of the cointegration parameters does not change our results. Conditioning on

the pre-estimated parameter vectors α and β, the log-likelihood procedure given in the

previous section evolves as quasi ML and is maximized for the remaining parameters.

Table 2 displays summary results for the modified Hasbrouck approach (more detailed

results can be found in the Appendix Table A-3). Local identification of the model

requires that the diagonal elements of Ψ are different. A Wald test statistic supports

local identification for all of our sample stocks at any common level of significance.

Moreover, the estimated ψ’s are generally smaller than one, indicating that the price

process evolves as a mixture of two regimes, where the second regime is characterized

by a smaller variance. The estimates for γ vary considerably across the sample stocks,

but overall tend to be smaller than 0.5, which leaves the regime associated with a lower

variance as the less likely one. On average, the absolute value of the adjustment coef-

ficient αh is lower than the corresponding value on the foreign market indicating that

a greater amount of error correction occurs on the U.S. market.

Turning to the estimated information shares, results concerning the modified Hasbrouck

approach are displayed in the first two columns of Table 3. The last two columns show

the results for the error correction approach as proposed by Gonzalo and Granger

(1995) (stock specific information shares can be found in the Appendix Table A-4).

Note that the interpretation of the GG coefficients is opposite to the Hasbrouck infor-

mation shares: The more a market adjusts to deviations from the equilibrium price,

the less it contributes to the price discovery process. The sample average of the rela-

tive adjustment that takes place on the NYSE amounts to 71% which indicates a clear

leadership of the TSE with respect to price discovery.

These results correspond to previous studies by Eun and Sabherwal (2003) and Gram-

mig, Melvin, and Schlag (2005), who also examine a set of Canadian interlisted stocks.

Eun and Sabherwal (2003) apply the GG approach and report a sample average of 38%

for the relative adjustment taking place on the TSE. With 29% for the relative home

market adjustment, our results on the GG approach indicate that the leadership of the
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ψh ψf γ αh αf ξh ξf

5th Perc. 0.00 0.05 0.12 -0.40 0.09 0.29 -0.02

25th Perc. 0.02 0.15 0.24 -0.23 0.28 0.56 0.10

Median 0.03 0.22 0.33 -0.12 0.37 0.85 0.26

Mean 0.05 0.24 0.34 -0.15 0.38 0.80 0.32

75th Perc. 0.06 0.33 0.46 -0.04 0.48 1.03 0.55

95th Perc. 0.15 0.45 0.56 0.01 0.68 1.21 0.80

Table 2: Descriptive Statistics on Parameter Estimates of the Modified Hasbrouck
Approach
ψh and ψf denote the diagonal elements matrix Ψ corresponding to home and foreign market innova-
tions, γ gives the probability associated with the first regime. αh and αf give the adjustment coefficients
of the home and foreign market return series and ξh and ξf denote the permanent impact of shocks on
the home market and foreign market returns series, respectively.

Modified Hasbrouck Error Correction (GG)

Approach Approach

TSE NYSE AdjTSE AdjNY SE

5th Perc. 50.0 35.9 1.5 28.8

25th Perc. 52.6 42.4 7.3 51.6

Median 55.5 44.5 22.6 77.4

Mean 56.2 43.8 29.1 70.9

St. Dev. 7.1 7.1 24.7 24.7

75th Perc. 57.6 47.4 48.4 92.7

95th Perc. 64.1 50.0 71.2 98.5

Table 3: Descriptive Statistics on Information Shares
The modified Hasbrouck approach denotes the unique information shares identified through distribu-
tional assumptions. The results on the error correction approach (GG) are the relative adjustment
coefficients based on the Gonzalo-Granger methodology of the home (TSE) and the foreign (NYSE)

market: AdjTSE = αT SE

αT SE+|αNY SE |
and AdjNY SE = |αNY SE |

αT SE+|αNY SE |
.
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TSE became even more pronounced in recent years.

However, the GG approach remains questionable, neglecting the dynamics of the sys-

tem. And considering the information shares derived by our modified approach, the

picture changes: we find an average information share of 44% of the NYSE, which is

well above the contribution detected by Eun and Sabherwal (2003). It also exceeds the

average information share of 35% detected by Grammig, Melvin, and Schlag (2005),

who apply the traditional Hasbrouck approach. Yet, they sampled their data at a very

high frequency of 10 seconds. Their information shares are likely to be affected by

microstructure noise.

Overall, our results show that the contribution of the NYSE to the price discovery

process of Canadian interlisted stocks has been severly underestimated so far and the

leadership of the home market is much less pronounced than indicated by previous

studies.

Table 4 gives summary statistics for information shares derived with the traditional

Hasbrouck approach (detailed results can be found in Table A-5 in the Appendix). It

contains the lower and upper bounds as well as the midpoint for the estimated informa-

tion shares. Although the effect of microstructure noise is alleviated at our sampling

frequency of 2 minutes, results from the traditional Hasbrouck approach are rather

unreliable: Considering the large deviation of the bounds - on average the difference

between lower and upper bounds amounts to 65% - it becomes clear that midpoint as

proxy for the true information share is a very inaccurate measure.

Another interesting results lies in the differences of estimated information shares among

the sample stocks. We find that the cross-sectional variation of information shares

using the modified Hasbrouck approach proposed in this paper, is much smaller than

those detected by the traditional Hasbrouck and the GG approach. The cross-sectional

standard deviation of information shares within the sample amounts to 24.7% for the

GG information shares, 14.3% for the Hasbrouck approach. Compared to Grammig,

Melvin, and Schlag (2005) who find a standard deviation of about 28% for their sample

stocks, this finding once again illustrates the crucial effect of the sampling frequency

within this framework, since averaging over large bounds acts as a smoothing factor.

Within our modified approach, we find a standard deviation of merely 7.1% for the

unique information shares obtained by our modified Hasbrouck approach. This result

is of paramount interest if considering possible determinants of a market’s contribution

to the price discovery process. So far only stock specific factors have been analysed.

Yet, due to the small variation of information shares among the sample stocks, our

results indicate that stock specific factors might be less important within the price

discovery process as previously considered, but rather hint at a market’s share in the
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TSE NYSE

Low. Upp. Low. Upp.

Bound Bound Midpoint Bound Bound Midpoint

5th Perc. 4.2 66.6 36.6 0.0 43.9 22.2

25th Perc. 11.2 89.7 50.6 0.5 56.9 28.9

Median 23.1 98.1 58.3 1.9 76.9 41.7

Mean 27.3 92.2 59.8 7.8 72.7 40.2

St. Dev. 19.0 14.3 14.3 14.3 19.0 14.3

75th Perc. 43.1 99.5 71.1 10.3 88.8 49.4

95th Perc. 56.1 100.0 77.8 33.4 95.8 63.4

Table 4: Descriptive Statistics on Traditional Hasbrouck Information Shares
The table shows descriptive statistics on the lower and upper bounds of Hasbrouck information shares
as well as on the associated midpoints.

price discovery process of interlisted stocks actually being a market’s share. In other

words market design seems to be a major determinant for information shares, implying

that the trading venue providing the most efficient trading environment will take over

the leadership in the price discovery process in the long run.

6 Concluding Remarks

This paper proposes a modification of the traditional Hasbrouck (1995) approach to

measure a market’s contribution to price discovery within the context of internationally

cross-listed stocks. Our modified information shares are unique and in principle can be

estimated on data sampled at any frequency. As a result the bias induced by market

microstructure noise is reduced by sampling at lower frequencies. We use our modified

approach and contrast it with the error correction approach proposed by Gonzalo and

Granger (1995) and the traditional Hasbrouck approach. The error correction approach

reveals the home market as the trading venue that clearly dominates price discovery.

Within the traditional Hasbrouck approach, a clear detection of a market’s contribution

to price discovery is hampered due to the large bounds induced by our relatively low

sampling frequency of two minutes.

The unique information shares derived from the modified approach proposed in this

paper also detect a slight leadership of the home market, however, it clearly reveals

that the contribution of the U.S. market price discovery process of Canadian interlisted
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stocks has been underestimated so far. According to our results price discovery is

more evenly divided between home and foreign market. Moreover, we reveal that the

variation of information shares among different stocks is much less pronounced than

previously thought and detected by the traditional approach. This result is particularly

interesting, since previous studies concerned with the factors that determine a market’s

contribution to price discovery, always considered stock specific factors such as the

number of U.S. analysts following the stock, foreign sales or foreign investment as the

most important determinants due to the large cross-sectional variation in information

shares. In contrast, our results rather hint at factors common to all stocks, i.e. market

specific factors, as the major determinant. As a result, it should be a prior incentive of

the stock exchanges to improve market efficiency in order to ensure their share in the

price discovery process of cross-listed stocks and attract further listings.

The applicability of the methodology presented in this paper is not limited to interna-

tional cross-listed stocks. Figuerola-Ferrett and Gonzalo (2007) measure price discovery

in commodity markets and Chakravarty, Gulen, and Mayhew (2004) use the Hasbrouck

(1995) methodology to examine the relative contribution to price discovery of stock and

options markets. Their results also suffer from the non-uniqueness of the traditional

information shares and are also prone to microstructure noise so that our modified

approach presents an appealing alternative.
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scenario base 1 2 3 4 5 6 7
σηh/σηf 0/0 0/0.5σǫ 0/σǫ 0/2σǫ σǫ/σǫ σǫ/2σǫ σǫ/4σǫ 2σǫ/4σǫ

ISf (midpoint) 69.2 63.7 51.2 28.3 63.4 38.9 15.3 26.9
ISf (lower) 69.2 61.3 46.1 22.8 57.3 32.0 11.3 21.1

(0.76) (0.76) (0.73) (0.54) (0.71) (0.55) (0.36) (0.43)
ISf (upper) 69.2 66.1 56.2 33.8 69.5 45.8 19.4 32.7

(0.75) (0.73) (0.74) (0.65) (0.63) (0.62) (0.47) (0.50)
ah -0.30 -0.29 -0.25 -0.16 -0.39 -0.26 -0.11 -0.23

(0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003)
af 0.20 0.24 0.35 0.59 0.28 0.52 0.79 0.69

(0.003) (0.003) (0.004) (0.005) (0.004) (0.005) (0.005) (0.005)
af/(af + |ah|) × 100 40.0 46.1 58.8 79.1 42.4 66.6 87.6 75.5

(0.41) (0.40) (0.38) (0.27) (0.39) (0.31) (0.20) (0.25)
ξh 0.42 0.43 0.49 0.61 0.29 0.41 0.53 0.41

(0.005) (0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002)
ξf 0.63 0.51 0.34 0.16 0.39 0.21 0.08 0.13

(0.005) (0.004) (0.003) (0.002) (0.003) (0.002) (0.001) (0.001)
σh

ǫ × 1000 0.20 0.20 0.21 0.22 0.31 0.32 0.32 0.51
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

σf
ǫ × 1000 0.20 0.23 0.30 0.48 0.31 0.48 0.85 0.87

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
ρǫf ǫh 0.00 0.05 0.10 0.12 0.13 0.14 0.11 0.13

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Table A-1: Effects of microstructure noise on information share estimates. Asymmetric case.

We simulate home and foreign market log prices ph
t and pf

t from a bivariate error correction model

„
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«
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„
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„
ǫht
ǫ
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t

«

. A true information share of 70 % of foreign and 30% of home market is imposed by setting αh = −0.3 and αf = 0.2, Γ1 =
“
−0.05 0.1
0.1 −0.05

”
and

Γ2 =
“
−0.05 0.05
0.05 −0.05

”
. The innovations ǫf and ǫf are contemporaneously and serially uncorrelated mean zero normally distributed random variables with

standard deviation σǫ = σf
ǫ = σh

ǫ = 0.0002.
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scenario base 1 2 3 4 5 6 7
σηh/σηf 0/0 0/0.5σǫ 0/σǫ 0/2σǫ σǫ/σǫ σǫ/2σǫ σǫ/4σǫ 2σǫ/4σǫ

ISf (midpoint) 100.0 99.7 96.5 74.6 97.7 78.4 38.5 45.4
ISf (lower) 100.0 99.6 95.2 69.6 96.7 74.0 32.3 39.2

(0.01) (0.11) (0.37) (0.76) (0.31) (0.69) (0.66) (0.62)
ISf (upper) 100.0 99.9 97.8 79.6 98.8 82.9 44.7 51.5

(0.01) (0.05) (0.24) (0.64) (0.18) (0.57) (0.69) (0.61)
ah -0.20 -0.20 -0.19 -0.16 -0.29 -0.24 -0.14 -0.23

(0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.002)
af 0.00 0.01 0.05 0.21 0.03 0.19 0.52 0.46

(0.002) (0.002) (0.003) (0.004) (0.002) (0.004) (0.005) (0.005)
af/(af + |ah|) × 100 0.7 3.6 19.4 57.2 10.5 43.7 78.4 66.5

(0.49) (0.93) (0.88) (0.51) (0.68) (0.52) (0.27) (0.31)
ξh 0.00 0.03 0.15 0.46 0.07 0.28 0.51 0.37

(0.009) (0.008) (0.007) (0.006) (0.005) (0.004) (0.003) (0.002)
ξf 1.05 0.87 0.63 0.34 0.62 0.36 0.14 0.19

(0.009) (0.008) (0.006) (0.004) (0.005) (0.003) (0.002) (0.002)
σh

ǫ × 1000 0.20 0.20 0.20 0.21 0.31 0.32 0.32 0.51
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

σf
ǫ × 1000 0.20 0.24 0.32 0.51 0.32 0.51 0.90 0.91

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
ρǫf ǫh 0.00 0.03 0.07 0.12 0.07 0.11 0.13 0.12

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Table A-2: Effects of microstructure noise on information share estimates. Monopolistic case.

We simulate home and foreign market log prices ph
t and pf

t from a bivariate error correction model
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. A 100 % information share of the foreign market is imposed by setting αh = −0.2 and αf = 0, Γ1 =
“
−0 0.1
0 −0.05

”
and Γ2 =

“
0 0.05
0 −0.05

”
. The innovations

ǫf and ǫf are contemporaneously and serially uncorrelated mean zero normally distributed random variables with standard deviation σǫ = σf
ǫ = σh

ǫ = 0.0002.
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ψh ψf γ ξh ξf αh αf

ABX 0.15 0.45 0.43 0.67 0.29 -0.21 0.48
ABY 0.02 0.30 0.47 0.93 0.16 -0.08 0.49
AEM 0.08 0.36 0.48 0.57 0.58 -0.32 0.31
AGU 0.03 0.27 0.40 0.51 0.53 -0.22 0.21
AL 0.18 0.33 0.22 0.57 0.60 -0.39 0.37
BCE 0.05 0.47 0.48 1.09 0.14 -0.05 0.38
BCM 0.03 0.37 0.58 1.07 0.05 -0.03 0.67
BMO 0.08 0.17 0.22 1.04 0.08 -0.04 0.55
BNS 0.01 0.36 0.59 0.97 0.11 -0.08 0.71
BVF 0.09 0.20 0.27 0.74 0.56 -0.30 0.40
CJR 0.00 0.04 0.17 0.52 0.35 -0.06 0.10
CLS 0.11 0.08 0.12 0.91 0.44 -0.23 0.49
CNQ 0.04 0.28 0.43 1.11 0.20 -0.12 0.66
CP 0.02 0.30 0.47 1.01 0.09 -0.05 0.53
DTC 0.01 0.30 0.48 0.94 0.13 -0.05 0.32
ECA 0.10 0.39 0.33 0.85 0.41 -0.18 0.37
ERF 0.04 0.15 0.20 0.44 0.84 -0.39 0.20
FDG 0.02 0.09 0.34 0.54 0.62 -0.31 0.27
FFH 0.02 0.12 0.29 0.47 0.51 -0.27 0.24
FHR 0.04 0.26 0.30 0.43 0.59 -0.29 0.22
GG 0.13 0.49 0.39 0.53 0.56 -0.36 0.34
GLG 0.06 0.39 0.45 0.48 0.71 -0.42 0.28
HBG 0.01 0.05 0.21 0.22 0.84 -0.08 0.02
IDR 0.03 0.12 0.21 0.32 0.67 -0.32 0.16
IPS 0.00 0.15 0.34 0.79 0.15 -0.06 0.29
IQW 0.01 0.23 0.39 1.10 0.12 -0.04 0.35
KGC 0.15 0.35 0.31 0.63 0.51 -0.30 0.38
LAF 0.02 0.18 0.24 0.06 0.88 -0.15 0.01
MDG 0.08 0.32 0.30 0.41 0.62 -0.46 0.31
MDZ 0.00 0.21 0.46 1.02 0.04 -0.01 0.32
MGA 0.05 0.24 0.24 0.59 0.55 -0.23 0.25
MHM 0.00 0.21 0.33 0.85 0.12 -0.04 0.28
MIM 0.03 0.12 0.18 0.12 0.79 -0.48 0.07
N 0.12 0.22 0.19 1.02 0.18 -0.13 0.77
NCX 0.02 0.23 0.29 0.71 0.34 -0.16 0.33
NRD 0.03 0.17 0.56 1.16 0.07 -0.03 0.46
NXY 0.02 0.13 0.46 1.21 -0.04 0.01 0.47
PCZ 0.05 0.20 0.26 1.21 0.03 -0.02 0.69
PDG 0.16 0.31 0.26 0.76 0.22 -0.15 0.50
PDS 0.05 0.27 0.39 0.81 0.42 -0.16 0.31
PGH 0.04 0.03 0.12 0.71 0.48 -0.17 0.26
PKZ 0.05 0.10 0.16 0.95 0.55 -0.24 0.41
PWI 0.03 0.07 0.12 0.76 0.38 -0.21 0.43
RCN 0.01 0.13 0.27 0.54 0.54 -0.13 0.13
RY 0.02 0.38 0.60 1.08 -0.02 0.01 0.60
RYG 0.00 0.20 0.44 0.91 0.12 -0.05 0.37
SLF 0.06 0.35 0.40 1.01 -0.02 0.01 0.41
SU 0.07 0.21 0.30 1.08 0.17 -0.07 0.45
TAC 0.00 0.31 0.55 0.91 0.08 -0.03 0.37
TD 0.04 0.47 0.50 1.10 0.01 0.00 0.45
TEU 0.03 0.19 0.32 0.82 0.21 -0.09 0.34
TLM 0.02 0.44 0.50 1.01 0.29 -0.13 0.45
TOC 0.01 0.35 0.47 1.45 -0.08 0.03 0.53
TRP 0.05 0.02 0.03 1.24 0.03 -0.01 0.48
TU 0.00 0.10 0.50 1.18 -0.11 0.05 0.58
ZL 0.05 0.16 0.28 0.93 0.19 -0.08 0.38

Table A-3: Estimated Parameters of the Modified Hasbrouck Approach
ψh and ψf denote the diagonal elements matrix Ψ corresponding to home and foreign market innova-
tions, γ gives the probability associated with the first regime. αh and αf give the adjustment coefficients
of the home and foreign market return series and ξh and ξf denote the permanent impact of shocks on
the home market and foreign market returns series, respectively.
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Modified Hasbrouck Error Correction (GG)
Approach Approach

TSE NYSE TSE NYSE

ABX 49.8 50.2 30.5 69.5
ABY 55.8 44.2 17.3 82.7
AEM 49.5 50.5 52.3 47.7
AGU 54.9 45.1 50.1 49.9
AL 50.0 50.0 48.8 51.2
BCE 58.8 41.2 11.7 88.3
BCM 53.3 46.7 5.7 94.3
BMO 56.6 43.4 3.3 96.7
BNS 53.6 46.4 8.5 91.5
BVF 51.9 48.1 40.3 59.7
CJR 73.2 26.8 42.2 57.8
CLS 54.6 45.4 40.4 59.6
CNQ 52.1 47.9 33.8 66.2
CP 55.5 44.5 15.2 84.8
DTC 58.8 41.2 7.5 92.5
ECA 53.7 46.3 12.5 87.5
ERF 50.4 49.6 32.4 67.6
FDG 51.6 48.4 6.4 93.6
FFH 53.8 46.2 62.9 37.1
FHR 52.4 47.6 5.5 94.5
GG 50.0 50.0 53.8 46.2
GLG 51.0 49.0 53.1 46.9
HBG 59.3 40.7 59.9 40.1
IDR 56.7 43.3 95.5 4.5
IPS 58.1 41.9 51.5 48.5
IQW 58.2 41.8 59.1 40.9
KGC 53.0 47.0 81.4 18.6
LAF 73.0 27.0 67.7 32.3
MDG 50.2 49.8 9.8 90.2
MDZ 58.6 41.4 6.1 93.9
MGA 53.8 46.2 44.1 55.9
MHM 57.7 42.3 60.2 39.8
MIM 55.8 44.2 3.7 96.3
N 50.8 49.2 48.2 51.8
NCX 57.2 42.8 12.9 87.1
NRD 59.5 40.5 87.7 12.3
NXY 58.3 41.7 33.0 67.0
PCZ 55.1 44.9 8.9 91.1
PDG 51.2 48.8 0.3 99.7
PDS 53.1 46.9 1.2 98.8
PGH 96.9 3.1 22.6 77.4
PKZ 52.7 47.3 34.3 65.7
PWI 52.3 47.7 37.9 62.1
RCN 55.5 44.5 36.6 63.4
RY 56.0 44.0 38.0 62.0
RYG 57.1 42.9 3.1 96.9
SLF 55.6 44.4 1.6 98.4
SU 57.5 42.5 4.3 95.7
TAC 58.5 41.5 18.2 81.8
TD 57.0 43.0 8.5 91.5
TEU 54.6 45.4 0.6 99.4
TLM 52.7 47.3 19.8 80.2
TOC 55.9 44.1 22.5 77.5
TRP 55.7 44.3 5.0 95.0
TU 57.1 42.9 2.0 98.0
ZL 61.1 38.9 8.4 91.6

Table A-4: Estimated Information Shares
The modified Hasbrouck approach denotes the unique information shares identified through distribu-
tional assumptions. The results on the error correction approach (GG) are the relative adjustment
coefficients based on the Gonzalo-Granger methodology.
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TSE NYSE

Low. Upp. Low. Upp.
Bound Bound Midpoint Bound Bound Midpoint

ABX 11.5 97.3 54.4 2.7 88.5 45.6
ABY 43.7 98.3 71.0 1.7 56.3 29.0
AEM 6.3 91.8 49.0 8.2 93.7 51.0
AGU 13.1 86.4 49.8 13.6 86.9 50.2
AL 4.2 94.9 49.6 5.1 95.8 50.4
BCE 45.7 99.0 72.4 1.0 54.3 27.6
BCM 26.9 99.9 63.4 0.1 73.1 36.6
BMO 42.2 99.7 71.0 0.3 57.8 29.0
BNS 32.3 99.5 65.9 0.5 67.7 34.1
BVF 8.3 95.0 51.6 5.0 91.7 48.4
CJR 53.6 89.5 71.6 10.5 46.4 28.4
CLS 15.3 96.4 55.8 3.6 84.7 44.2
CNQ 18.2 99.4 58.8 0.6 81.8 41.2
CP 41.6 99.6 70.6 0.4 58.4 29.4
DTC 52.5 98.8 75.6 1.2 47.5 24.4
ECA 13.6 96.9 55.3 3.1 86.4 44.7
ERF 3.8 82.0 42.9 18.0 96.2 57.1
FDG 7.1 89.4 48.3 10.6 92.9 51.7
FFH 10.5 86.5 48.5 13.5 89.5 51.5
FHR 7.6 84.5 46.1 15.5 92.4 53.9
GG 6.1 91.7 48.9 8.3 93.9 51.1
GLG 4.2 89.6 46.9 10.4 95.8 53.1
HBG 6.4 53.6 30.0 46.4 93.6 70.0
IDR 8.5 67.1 37.8 32.9 91.5 62.2
IPS 39.7 98.6 69.1 1.4 60.3 30.9
IQW 47.8 99.4 73.6 0.6 52.2 26.4
KGC 14.3 89.7 52.0 10.3 85.7 48.0
LAF 6.9 11.8 9.3 88.2 93.1 90.7
MDG 4.4 88.1 46.2 11.9 95.6 53.8
MDZ 51.0 99.9 75.4 0.1 49.0 24.6
MGA 11.4 90.8 51.1 9.2 88.6 48.9
MHM 42.9 99.1 71.0 0.9 57.1 29.0
MIM 0.9 64.9 32.9 35.1 99.1 67.1
N 15.6 99.5 57.6 0.5 84.4 42.4
NCX 29.6 93.5 61.5 6.5 70.4 38.5
NRD 54.0 99.8 76.9 0.2 46.0 23.1
NXY 56.9 99.9 78.4 0.1 43.1 21.6
PCZ 31.8 100.0 65.9 0.0 68.2 34.1
PDG 15.5 98.4 56.9 1.6 84.5 43.1
PDS 17.8 94.8 56.3 5.2 82.2 43.7
PGH 31.4 83.6 57.5 16.4 68.6 42.5
PKZ 13.4 95.3 54.3 4.7 86.6 45.7
PWI 19.4 93.3 56.3 6.7 80.6 43.7
RCN 14.7 86.9 50.8 13.1 85.3 49.2
RY 44.6 100.0 72.3 0.0 55.4 27.7
RYG 35.1 99.4 67.3 0.6 64.9 32.7
SLF 39.2 100.0 69.6 0.0 60.8 30.4
SU 32.9 99.3 66.1 0.7 67.1 33.9
TAC 55.8 99.4 77.6 0.6 44.2 22.4
TD 45.2 100.0 72.6 0.0 54.8 27.4
TEU 27.8 98.1 62.9 1.9 72.2 37.1
TLM 17.3 98.5 57.9 1.5 82.7 42.1
TOC 42.8 99.9 71.3 0.1 57.2 28.7
TRP 71.6 99.9 85.7 0.1 28.4 14.3
TU 69.1 99.0 84.0 1.0 30.9 16.0
ZL 45.4 98.1 71.8 1.9 54.6 28.2

Table A-5: Traditional Hasbrouck Information Shares
The table shows the lower and upper bounds for Hasbrouck information shares as well as the associated
midpoints.
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