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Abstract:
Despite their importance in modern electronic trading, virtually no systematic empirical 
evidence on the market impact of incoming orders is existing. We quantify the short-run and 
long-run price effect of posting a limit order by proposing a high-frequency cointegrated VAR 
model for ask and bid quotes and several levels of order book depth. Price impacts are 
estimated by means of appropriate impulse response functions. Analyzing order book data of 
30 stocks traded at Euronext Amsterdam, we show that limit orders have significant market 
impacts and cause a dynamic (and typically asymmetric) rebalancing of the book. The 
strength and direction of quote and spread responses depend on the incoming orders’ 
aggressiveness, their size and the state of the book. We show that the effects are 
qualitatively quite stable across the market. Cross-sectional variations in the magnitudes of 
price impacts are well explained by the underlying trading frequency and relative tick size. 
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over time. Designing the shock vectors in a specific way allows us to characterize the

type of the limit order represented by its size and its position in the order queue as

well as the current state of the book.

The motivation for using a cointegrating system stems from the fact that ask and bid

quotes are naturally integrated and tend to move in locksteps. Cointegration analysis

reveals a stationary linear combination of bid and ask quotes which closely resembles

the bid-ask spread. The idea of jointly modelling ask and bid quote dynamics in

terms of a cointegrated system originates from Engle and Patton (2004) based on the

work of Hasbrouck (1991) and has been used in other approaches, such as Hansen and

Lunde (2006) and Escribano and Pascual (2006). Our setting extends and modifies this

approach in two major respects: Firstly, we model quotes and depth simultaneously.

This yields a novel type of order book model capturing not only quote and depth

dynamics but implicitly also dynamics of midquotes, midquote returns, spreads, spread

changes as well as order book imbalances. Secondly, we model the system not only on

a trade-to-trade basis but exploit the complete order arrival process. Therefore, the

model captures all relevant trading characteristics in a limit order book market and

thus provides a complete description of the order book in a range close to the best

quotes. Hence, the model is particularly useful for liquid assets where most of the

market activity is concentrated at the best quote levels. In this sense, the approach

complements to the dynamic model for complete order book curves introduced by

Härdle, Hautsch, and Mihoci (2009).

The proposed quote and depth model is estimated by Johansen’s (1991) full infor-

mation maximum likelihood estimator, using high-frequency order book data for 30

stocks traded on Euronext Amsterdam covering a sample period over two months in

2008. We find strong evidence for the existence of a common stochastic component

in quotes and corresponding depths resulting in cointegration relationships which sig-

nificantly deviate from the bid-ask spread. In this sense, our results shed some light

on the strength of co-movements in ask and bid prices depending on the underlying

depth. Furthermore, we show that incoming limit orders have significant impacts on

subsequent ask and bid processes. It turns out that the magnitude and direction of

quote adjustments strongly depend on the order’s aggressiveness, its (relative) size and

the prevailing depth in the book. In particular, we show the following results: (i) Quote

adjustments are the stronger and the faster, the closer the incoming order is posted to

the market. Most significant effects are reported for orders posted on up to two levels

behind the market. For less aggressive orders virtually no effects can be quantified.

(ii) Limit orders temporarily narrow the spread. Converse effects are shown for market
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orders. In the long-run, these effects are reverted back in an asymmetric way. (iii)

Large limit orders posted inside the spread induce severe long-run effects pushing the

market in the intended trading direction. In contrast, small limit orders posted inside

the spread tend to be picked up quickly inducing adverse price reactions. (iv) The

long run market impact of aggressive market orders walking up (or down, respectively)

the book is the higher the smaller the prevailing depth behind the market. (v) The

effects are qualitatively stable across the market, where the absolute magnitudes of

price impacts differ in dependence of underlying stock-specific characteristics. It turns

out that approximately 60%-80% of the cross-sectional variation in market impacts can

be explained by the trading frequency and the minimum tick size.

The remainder of this paper is structured as follows. In Section 2, we describe

the trading structure of Euronext Amsterdam and provide descriptive statistics. The

econometric approach is explained in Section 3. Section 4 gives the estimation results

and Section 5 provides the quantified price impacts of different types of limit orders.

Finally, Section 6 concludes.

2 Data and Market Environment

The Euronext NSC system is a transparent electronic trading system with price and

time order precedence rules. During continuous trading between 9:00 and 17:30 CET,

a centralized computer system matches market orders against the best (in terms of

price) prevailing limit order on the opposite side of the limit order book. If there is

insufficient volume to fully execute the incoming order, the remaining part of the order

will be consolidated into the book. Euronext supports various order types, such as pure

market orders (order execution without a price limit), stop orders (issuing limit orders

or pure market orders when a triggered price is reached) and iceberg orders (displaying

only a part of the size in the book). Consolidation of these orders results in sequences

of limit and market order submissions or cancellations, respectively.

Our dataset is provided by Deutsche Bank and comprises of trades and limit order

activities of the 30 most frequently traded stocks at Euronext Amsterdam between

August 1st and September 30th, 2008. Every transaction and every change of the order

book are recorded in milliseconds. The data contains information on the prevailing

market depth (in terms of the number of shares) for the five best quotes on both sides

of the market. Preliminary analyses (which are also supported by the results given in

Section 5) show that aggressive limit orders queued close to the best ask and bid quotes

have the highest market impact while induced price effects significantly decline with
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the distance to the market. Accordingly, we focus only on the best three price levels

in the book.

Unlike the trade data which is well filtered by built-in filters in the database1, the

order book data is completely raw. We remove observations where (i) the spread is

zero or negative, and (ii) ask or bid quotes change by more than 2%.2 Moreover, to

remove effects due to the opening and closing of the market, we discard the data of the

first five and last five minutes of the continuous trading period.

Matching of trade and quote data is achieved by a matching algorithm which is de-

scribed in detail in Appendix A. This algorithm matches a trade with the corresponding

order book observation by comparing its price and volume with the resulting changes

of quotes and depths in the book within an adaptively chosen time window. This algo-

rithm minimizes the probability of misclassifications and as a by-product provides an

estimate of the time asynchroneity between trade and order book records.3

To classify the initiation type of trades, we use a hybrid procedure according to

Lee and Ready (1991). Firstly, we determine the type of trades which are located in

more than one second time distance to previous trades using the mid-quote method.

I.e., if a trade occurs with a price greater (less) than the most current mid-quote, it is

classified as buy (sell). If the transaction price equals the mid-quote, it is marked as

“undetermined”. Secondly, “undetermined” trades and trades which follow previous

transactions in less than one second time distance are classified by the tick-test method.

Accordingly, if the trade price is higher (lower) than the previous one, it is identified

as a buy (sell). If it does not change the price, it is categorized as the same type as

the previous one. Finally, we identify sub-transactions arising from the execution of a

big market order against several (smaller) limit orders if they occur in less than one

second after the previous trade and have the same initiation types. All corresponding

sub-transactions are consolidated to a single transaction.

Table 1 gives descriptive statistics of the resulting data used in the paper. We

observe significantly more limit order activities than market orders. The average bid-

ask spread is the higher the less liquid the underlying stock. Moreover, second level

1Besides recording errors, block trades and transactions in auction periods are excluded.

2In order to limit the volatility, Euronext NSC suspends continuous trading if prices change by more

than 2%. This is not exactly the same rule as that implemented here, but it is reasonably mimicked.

3Due to technological progress in the last decades, time delay between trade and quote records is

nowadays hardly greater than one second. Consequently, the “five-second” rule according to Lee and

Ready (1991), which has been commonly used in empirical market microstructure literature is not

appropriate anymore for more recent datasets.
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market depth is higher than first level depth while it is approximately equal to the

third level.

3 Econometric Modelling

3.1 A Cointegrated VAR Model for Quotes and Depths

Denote 𝑡 as a (business) time index, indicating all order book activities, i.e., incoming

limit or market orders as well as limit order cancellations. Furthermore, 𝑝𝑎𝑡 and 𝑝𝑏𝑡

define the best log ask and bid quotes instantaneously after the 𝑡-th order activity.

Moreover, 𝑣𝑎,𝑗𝑡 and 𝑣𝑏,𝑗𝑡 for 𝑗 = 1, . . . , 𝑘, denote the log depth on the 𝑗-th best observed

quote level on the ask and bid side, respectively.

To capture the high-frequency dynamics in quotes and depths we define a 𝐾(= 2+

2×𝑘)-dimensional vector of endogenous variables 𝑦𝑡 := [𝑝𝑎𝑡 , 𝑝
𝑏
𝑡 , 𝑣

𝑎,1
𝑡 , . . . , 𝑣𝑎,𝑘𝑡 , 𝑣𝑏,1, . . . , 𝑣𝑏,𝑘𝑡 ]′.

The quote levels associated with 𝑣𝑎,𝑗𝑡 and 𝑣𝑏,𝑗𝑡 are not observed on a fixed grid at and

behind the best quotes. Hence, their price distance to 𝑝𝑎𝑡 and 𝑝𝑏𝑡 is not necessarily

exactly 𝑗 − 1 ticks but might be higher if there are no limit orders on all possible

price levels behind the market. Consequently, we only exploit the information that

𝑣𝑎,𝑗𝑡 and 𝑣𝑏,𝑗𝑡 are the depths of the currently observed 𝑗-th best price level and ignore

information about their actual price distance to 𝑝𝑎𝑡 and 𝑝𝑏𝑡 . Two reasons justify this

proceeding: Firstly, for liquid assets, gaps in the price grids around the best quotes do

not occur very often and are negligible. Hence in this case, level 𝑗 mostly corresponds

to a distance of 𝑗 − 1 ticks to the corresponding best quote. Secondly, incorporating

not only the market depth on the individual levels but also the corresponding price

information would significantly increase the dimension of the underlying system and

would complicate our analysis without providing substantial additional insights.

Modelling log volumes instead of plain volumes is a common practice in many

empirical studies to reduce the impact of extraordinarily large volumes. This is also

suggested by Potters and Bouchaud (2003) studying the statistical properties of market

impacts of trades. Moreover, using logs implies that changes in market depth can be

interpreted as relative changes with respect to the current depth level.

Hence, we model log quotes and log depths as a cointegrated VAR(𝑝) model aug-

mented by 𝑠 lags of exogenous variables – henceforth VARX(𝑝, 𝑠) model – with the

vector error correction (VEC) form

Δ𝑦𝑡 = 𝜇 + 𝛼𝛽′𝑦𝑡−1 +

𝑝−1∑
𝑖=1

Γ𝑖Δ𝑦𝑡−𝑖 +
𝑠∑

𝑗=1

𝐵𝑗𝑥𝑡−𝑗 + 𝑢𝑡, (1)

7



where 𝜇 is a constant, 𝛼 and 𝛽 denote the 𝐾 × 𝑟 loading and cointegrating matrices

with 𝑟 < 𝐾, and Γ𝑖, 𝑖 = 1, . . . , 𝑝 − 1, is a 𝐾 × 𝐾 parameter matrix. The vector

𝑥𝑡 = [𝐵𝑈𝑌𝑡, 𝑆𝐸𝐿𝐿𝑡]
′ denotes a 2 × 1 vector of dummy variables indicating the oc-

currence of a buy or sell trade, respectively, with corresponding parameter vector 𝐵𝑗 ,

𝑗 = 1, . . . , 𝑠. The inclusion of 𝑥𝑡 is necessary in order to be able to distinguish be-

tween the effects caused by a market order and that induced by a cancellation. Both

events remove volume from the book, however, presumably have quite different long

run market impacts.

Note that we endogenize only quotes and depths but not order choice decisions

themselves. Including the latter would significantly increase the complexity of the

model and would make the cointegration analysis more difficult without yielding sig-

nificantly more insights given the objective of our study. Hence, the model can be

seen as a reduced form description of the dynamics of quotes and depths caused by an

arriving order. Consequently, we treat 𝑥𝑡 as a weakly exogenous variable.

The noise term 𝑢𝑡 is assumed to be serially uncorrelated with zero mean and co-

variance Σ𝑢. Since limit orders placed inside of the spread and large market orders

“walking down” or “up” the order book imply a simultaneous change of both quotes

and depths, the covariance matrix Σ𝑢 is obviously not diagonal. Table 2 summarizes

the definition of these variables.

Variable Description

𝑝𝑎𝑡 Log ask quote after the arrival of the 𝑡-th order.

𝑝𝑏𝑡 Log bid quote after the arrival of the 𝑡-th order.

𝑣𝑎,𝑙𝑡 Log depth at the 𝑙-th best ask price after the arrival of the 𝑡-th order.

𝑣𝑏,𝑙𝑡 Log depth at the 𝑙-th best bid price after the arrival of the 𝑡-th order.

𝐵𝑈𝑌𝑡 Buy dummy, equal to one if the 𝑡-th order is a buy trade.

𝑆𝐸𝐿𝐿𝑡 Sell dummy, equal to one if the 𝑡-th order is a sell trade.

Table 2: Variable definitions

For the impulse-response analysis below, it turns out to be more convenient to work

with the reduced VARX form of model (1)

𝑦𝑡 = 𝜇 +

𝑝∑
𝑖=1

𝐴𝑖𝑦𝑡−𝑖 +

𝑠∑
𝑗=1

𝐵𝑗𝑥𝑡−𝑗 + 𝑢𝑡, (2)

where 𝐴1 := 𝐼𝐾 +𝛼𝛽′ + Γ1 with 𝐼𝐾 denoting a 𝐾 ×𝐾 identity matrix, 𝐴𝑖 := Γ𝑖−Γ𝑖−1

with 1 < 𝑖 < 𝑝 and 𝐴𝑝 := −Γ𝑝−1.
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While representation (1) is a model for (relative) changes in quotes and depths,

specification (2) is a model for quote and depth levels. Obviously, model (2) can be

further rotated in order to represent dynamics in spreads, relative spread changes,

midquotes, midquote returns as well as (ask-bid) depth imbalances. Hence, the model

is sufficiently flexible to capture the high-frequency dynamics of all relevant trading

variables. In models involving only quote dynamics (see, e.g., Engle and Patton 2004)

or spread dynamics (see, e.g., Lo and Sapp 2006), the error correction term 𝛽′𝑦𝑡 is

typically assumed to be equal to the spread implying a linear restriction 𝑅′𝛽 = 0 with

𝑅′ = [1, 1, 0, . . . , 0]. Note that we do not impose this assumption here. As depth

contains information on the equilibrium (long run) state of the order book as well,

we expect the existence of stationary processes which are linear combinations of both

quotes and depths.

Model (1) is estimated by the Full Information Maximum Likelihood (FIML) esti-

mator proposed by Johansen (1991) and Johansen and Juselius (1990). Let 𝑧0𝑡 := Δ𝑦𝑡,

and 𝑧1𝑡 := 𝑦𝑡−1. Further let 𝑧2𝑡 be the vector of stacked variables,

𝑧2𝑡 := (Δ𝑦𝑡−1, ⋅ ⋅ ⋅ ,Δ𝑦𝑡−𝑝+1, 𝑥𝑡−1, ⋅ ⋅ ⋅ , 𝑥𝑡−𝑠, 1)′

with corresponding parameter vector Γ = (Γ1, . . . ,Γ𝑝−1, 𝐵1, . . . , 𝐵𝑠, 𝜇). Define the

product moment matrices

𝑀𝑖𝑗 := 𝑇−1
𝑇∑
𝑡=1

𝑧𝑖𝑡𝑧
′
𝑗𝑡, 𝑖, 𝑗 = 0, 1, 2,

where 𝑇 is the number of observations. Moreover, let

𝑆𝑖𝑗 := 𝑀𝑖𝑗 −𝑀𝑖2𝑀
−1
22 𝑀2𝑗 .

We then solve the generalized eigenvalue problem

∣∣𝜆𝑆11 − 𝑆10𝑆
−1
00 𝑆01

∣∣ = 0

for the eigenvalues 1 > �̂�1 > ⋅ ⋅ ⋅ > �̂�𝐾 > 0 and corresponding eigenvector 𝑉 =

(𝑣1, ⋅ ⋅ ⋅ , 𝑣𝐾) which is normalized by 𝑉 𝑆11𝑉 = 𝐼𝐾 . Johansen’s (1991) trace test or

maximum eigenvalue test can be used to determine the underlying cointegration rank

𝑟. Under the hypothesis that there exist 𝑟 cointegration relationships, the 𝐾 × 𝑟

cointegration matrix 𝛽 is estimated by

𝛽 = (𝑣1, . . . , 𝑣𝑟)
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with corresponding maximized log-likelihood function

𝑙max(𝛽) = −𝑇

2

(
ln ∣𝑆00∣ +

𝑟∑
𝑖=1

ln(1 − �̂�𝑖)

)
. (3)

The magnitude of �̂�𝑖 can be interpreted as a measure of the “stationarity” of the product

𝛽′
𝑖𝑦𝑡. The larger �̂�𝑖, the closer the stochastic properties of the underlying relationship

to that of a stationary process. The parameters 𝛼 and Γ are estimated by OLS after

inserting 𝛽 into equation (1) and computing Σ̂𝑢 as Σ̂𝑢 = 𝑆00 − �̂��̂�′.

Following Lütkepohl and Reimers (1992), the parameters of equation (1) can be

easily transformed to equation (2). In this context, we define a transformation matrix

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝐾 0 0 ⋅ ⋅ ⋅ 0 0

𝐼𝐾 −𝐼𝐾 0 ⋅ ⋅ ⋅ 0 0

0 𝐼𝐾 −𝐼𝐾 . . . 0 0
...

...
. . .

. . .
... 0

0 0 0
. . . 0 0

0 0 0 ⋅ ⋅ ⋅ −𝐼𝐾 0

0 0 0 ⋅ ⋅ ⋅ 𝐼𝐾 −𝐼𝐾
𝐼2 0 ⋅ ⋅ ⋅ 0 0

0 0 𝐼2 0 0
...

. . . 0 0

0 0 ⋅ ⋅ ⋅ 𝐼2 0

0 0 ⋅ ⋅ ⋅ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑃+2𝑠+1)×(𝐾𝑃+2𝑠+1)

such that

[𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, 𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑠, 𝜇] = [𝛼𝛽′,Γ]𝐷 + 𝐽∗, (4)

where 𝐽∗ := [𝐼𝐾 : 0 : ⋅ ⋅ ⋅ : 0] is a 𝐾×(𝐾𝑝+2𝑠+1) matrix. The theorem below provides

a consistent estimator of 𝐴 and 𝐵:

Theorem 1 (Lütkepohl and Reimers, 1992). Let �̂�, 𝛽, Γ̂ and Σ̂𝑢 denote the FIML esti-

mates of the parameters of model (1). Moreover, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, �̂�1, ⋅ ⋅ ⋅ , �̂�𝑠 are computed

by the transformation in (4). Then,

√
𝑇
[
vec(𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, �̂�1, ⋅ ⋅ ⋅ , �̂�𝑠, �̂�) − vec(𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, 𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑠, 𝜇)

]
𝑑→ 𝒩 (0,Σ𝐴𝐵),

(5)
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where

Σ𝐴𝐵 = 𝐷′

[
𝛽 0

0 𝐼𝐾(𝑝−1)+2𝑠+1

]
Ω−1

[
𝛽′ 0

0 𝐼𝐾(𝑝−1)+2𝑠+1

]
𝐷⊗Σ𝑢,

Ω = plim
1

𝑇

[
𝛽′𝑀11𝛽 𝛽′𝑀12

𝑀21𝛽 𝑀22

]

are consistently estimated by

Σ̂𝐴𝐵 = 𝐷′

[
𝛽 0

0 𝐼𝐾(𝑝−1)+2𝑠+1

]
Ω̂−1

[
𝛽′ 0

0 𝐼𝐾(𝑝−1)+2𝑠+1

]
𝐷⊗ Σ̂𝑢

Ω̂ =

[
𝛽′𝑀11𝛽 𝛽′𝑀12

𝑀21𝛽 𝑀22

]
.

Proof. See Lütkepohl and Reimers (1992) by noting that their proof still holds with

additional exogenous variables.

Linear restrictions on 𝛽 can be tested by the likelihood ratio test proposed by Jo-

hansen (1991). Consider, for instance, the restriction 𝑅′𝛽 = 0 with 𝑅′ = [1, 1, 0, . . . , 0]

implying the bid-ask spread as cointegration relationship. By defining

𝐻 = 𝑅⊥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

−1 0 0 . . . 0

0 1 0 . . . 0

0 0
. . . 0

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

︸ ︷︷ ︸
𝐾×(𝐾−1)

where 𝑎⊥ denotes the basis of the null space of 𝑎′, the restriction becomes

ℋ0 : 𝛽 = 𝐻𝜑,

with the (𝐾 − 1) × 𝑟 matrix 𝜑 denoting the parameter vector. Under this hypothesis,

𝜑 can be estimated by solving∣∣𝜆∗𝐻 ′𝑆11𝐻 −𝐻 ′𝑆10𝑆
−1
00 𝑆01𝐻

∣∣ = 0

and collecting eigenvectors associated with the first 𝑟 largest eigenvalues �̂�∗1 > ⋅ ⋅ ⋅ > �̂�∗𝑟 .

The corresponding likelihood ratio test statistic is given by

𝑇
𝑟∑

𝑖=1

ln
(
(1 − �̂�∗𝑖 )/(1 − �̂�𝑖)

)
,

which is asymptotically 𝜒2-distributed with 𝑟 degrees of freedom.
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3.2 Limit Orders as Shocks to the System

In this section, we illustrate how to represent incoming orders as shocks to the system

specified in equation (2). Whenever an order enters the order book, it (i) will change

the depth in the book, (ii) may change the best quotes depending on which position

in the queue it is placed, and (iii) will change the trade indication dummy in case of a

market order. We represent these changes in terms of an impulse vector 𝛿 := [𝛿′𝑣, 𝛿
′
𝑝, 𝛿

′
𝑥]′

with 𝛿𝑣 being a 2𝑘× 1 vector associated with shocks to the depths, 𝛿𝑝 denoting a 2× 1

vector consisting of shocks to the quotes and 𝛿𝑥 being a 2×1 vector representing shocks

to the trade indication dummy.

Note that in some situations, one side of the order book may be completely “shifted”

by an incoming order. For example, a bid limit order posted inside the spread improves

the bid quote and thus establishes a new best price level. As a consequence, all volumes

on the bid side are simultaneously shifted by one quote level.4

We design impulse vectors associated with five scenarios commonly faced by market

participants. As graphically illustrated by Figures 1 to 4, a three-level order book is

initialized by the best ask quote 𝑝𝑎𝑡 = 1002, best bid quote 𝑝𝑏𝑡 = 1000, second best ask

quote 1003, second best bid quote 999, and levels of depths on the bid side 𝑉 𝑏,1
𝑡 = 1,

𝑉 𝑏,2
𝑡 = 1.5, 𝑉 𝑏,3

𝑡 = 𝑉 𝑏,4
𝑡 = 1.4. The following scenarios are considered:5

Scenario 1a (normal limit order): Arrival of a bid limit order with price 1000 and

size 0.5 to be placed at the market, i.e. posted at the best bid quote. As shown

in Figure 1, this order will be consolidated at the best bid without changing the

prevailing quotes. Because the initial depth on the first level is assumed to be 1.0,

the change of the log depth is ln(1.5) ≈ 0.4. Correspondingly, the shock vectors

are given by 𝛿𝑣 = [0, 0, 0, 0.4, 0, 0]′ , 𝛿𝑝 = 𝛿𝑥 = [0, 0]′.

Scenario 1b (passive limit order): Arrival of a bid limit order with price 999 and

size 0.5 to be posted behind the market, i.e. its limit price is smaller than the

current best bid quote. As in the scenario above, it does not change the prevailing

quotes and only affects the depth. Because the initial depth on the second level

is 1.5, the log depth change is ln(1 + 0.5/1.5) ≈ 0.29. Consequently, we have

𝛿𝑣 = [0, 0, 0, 0, 0.29, 0]′ , 𝛿𝑝 = 𝛿𝑥 = [0, 0]′.

4An exception occurs whenever the depth of the order book is uniformly distributed. In this case, the

incoming order only “shocks” the depth at the best quote. However, this scenario is quite unrealistic.

5For sake of brevity, the scenarios are only characterized for the bid side. For ask orders, the setting

is correspondingly shifted to the other side of the market.
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Figure 1 (Scenario 1a (normal limit order)): An incoming bid limit order with price

1000 and size 0.5. It affects only the depth at the best bid without changing the prevailing

quotes or resulting in a trade. The underlying shock vectors are 𝛿𝑣 = [0, 0, 0, 0.4, 0, 0]′ and

𝛿𝑝 = 𝛿𝑥 = [0, 0]′.

1

1.5
1.4

1

1.5
1.4

price

d
e
p
th

0.5

⇒

1

1.5
1.4

1

1.5

0.5

price

d
e
p
th

Figure 2 (Scenario 2 (aggressive limit order)): An incoming bid limit order with price

1001 and size 0.5 improving the bid quote and changing all depth levels on the bid side of the

order book. The underlying shock vectors are 𝛿𝑣 = [0, 0, 0,−0.69,−0.4, 0.07]′, 𝛿𝑝 = [0, 0.001]′

and 𝛿𝑥 = [0, 0]′.
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Figure 3 (Scenario 3 (normal market order)): An incoming bid (buy) market order with

price 1002 and size 0.5 which results in a buy transaction. The underlying shock vectors are

𝛿𝑣 = [−0.69, 0, 0, 0, 0, 0]′, 𝛿𝑝 = [0, 0]′ and 𝛿𝑥 = [1, 0]′.

Scenario 2 (aggressive limit order): Arrival of a bid limit order with price 1001

and size 0.5 to be posted inside of the current spread. Figure 2 shows that

it improves the best bid by 0.1% and accordingly shifts all depth levels on

the bid side. The resulting shock vector is given by 𝛿𝑣 = [0, 0, 0, (log(0.5) ≈
−0.69), (ln(1/1.5) ≈ −0.4), (ln(1.5/1.4) ≈ 0.07)]′, 𝛿𝑝 = [0, 0.001]′ and 𝛿𝑥 = [0, 0]′.

Scenario 3 (normal market order): Arrival of a bid order with price 1002 and size

0.5. This order will be executed immediately against pending limit orders at the

best ask and thus results in a buy market order. Because it absorbs liquidity from

the book, it shocks the corresponding depth levels negatively. Figure 3 depicts

the corresponding changes of the order book as represented by 𝛿𝑣 = [ln(0.5) ≈
−0.69, 0, 0, 0, 0, 0]′ , 𝛿𝑝 = [0, 0]′ and 𝛿𝑥 = [1, 0]′.

Scenario 4 (aggressive market order): Arrival of a bid order with price 1003 and

size 1.2. We refer this to an “aggressive” market order because it “walks up” the

order book. Correspondingly, the best ask quote and all depth levels are simulta-

neously shifted resulting in the shock vector 𝛿𝑣 = [(ln(1.3) ≈ 0.26), (ln(1.4/1.5) ≈
−0.07), 0, 0, 0, 0]′ , 𝛿𝑝 = [(1/1002) ≈ 0.001, 0]′ and 𝛿𝑥 = [1, 0]′.

Table 3 summarizes the shock vectors implied by the different scenarios.
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Figure 4 (Scenario 4 (aggressive market order)): An incoming bid (buy) market order

with price 1003 and size 1.2 “walking up” the order book and simultaneously changing all

depth levels on the bid side. The underlying shock vectors are 𝛿𝑣 = [0.26,−0.07, 0, 0, 0, 0]′,

𝛿𝑝 = [0.001, 0]′ and 𝛿𝑥 = [1, 0]′.

3.3 Measuring the Market Impact

We quantify the market impact of incoming limit orders by the implied expected short-

run and long-run shift of ask and bid quotes. This reaction is quantified by the impulse

response function,

𝑓(ℎ; 𝛿𝑦, 𝛿𝑥) = E[𝑦𝑡+ℎ∣𝑦𝑡+𝛿𝑦, 𝑥𝑡+𝛿𝑥, 𝑦𝑡−1, ⋅ ⋅ ⋅ , 𝑥𝑡−1, ⋅ ⋅ ⋅ ]−E[𝑦𝑡+ℎ∣𝑦𝑡, 𝑥𝑡, 𝑦𝑡−1, ⋅ ⋅ ⋅ , 𝑥𝑡−1, ⋅ ⋅ ⋅ ],
(6)

where the shock on quotes and depths in the order book is denoted by 𝛿𝑦 := [𝛿′𝑝, 𝛿
′
𝑣]
′

and ℎ is the number of periods (measured in “order event” time).

Note that we do not have to orthogonalize the impulse since contemporaneous rela-

tionships between quotes and depths are captured by construction of the shock vector.

Moreover, our data is based on the arrival time of orders avoiding time aggregation as

another source of mutual dependence in high-frequency order book data.

Using impulse-response analysis to retrieve the market impact has two major ad-

vantages. First, in contrast to an analysis of estimated VEC coefficients which only

reveals the immediate impact, it enables us to examine both long-run and short-run

effects. Second, it allows us to straightforwardly quantify the joint effect induced by

simultaneous changes of several variables given a certain state of other variables.

We consider two moving average (MA) representations of the cointegrated VARX
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Scenario limit order shock vectors

(dir,price,size) 𝛿′𝑣 𝛿′𝑝 𝛿′𝑥

“normal limit order” (Bid,1000, 0.5) [0, 0, 0, 0.4, 0, 0] [0, 0] [0, 0]

“passive limit order” (Bid,999, 0.5) [0, 0, 0, 0, 0.29, 0] [0, 0] [0, 0]

“aggressive limit order” (Bid,1001, 0.5) [0, 0, 0,−0.69,−0.4, 0.07] [0, 0.001] [0, 0]

“normal market order” (Bid,1002, 0.5) [−0.69, 0, 0, 0, 0, 0] [0, 0] [1, 0]

“aggressive market order” (Bid,1003, 1.2) [0.26,−0.07, 0, 0, 0, 0] [0.001, 0] [1, 0]

Table 3: Shock vectors implied by the underlying five scenarios. Initial order book: 𝑝𝑎𝑡 = 1002,

𝑝𝑏𝑡 = 1000, second best ask price = 1003, second best bid price = 999, 𝑉 𝑏,1
𝑡 = 1, 𝑉 𝑏,2

𝑡 =

1.5, 𝑉 𝑏,3
𝑡 = 𝑉 𝑏,4

𝑡 = 1.4.

model. The first one is based on the reduced form given by equation (2). This rep-

resentation allows us to compute the path of the response function over time. The

second one is the Granger representation based on the VECM form in equation (1)

which enables us to explicitly compute the permanent (long-run) response.

We start our discussion with the first MA representation. The companion VARX(1, 1)

form of the VARX(𝑝, 𝑠) model in equation (2) is given by

𝑌𝑡 = 𝝁 +A𝑌𝑡−1 +B𝑥𝑡 + 𝑈𝑡, (7)

where

𝝁 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇

0
...

0

−−
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑝+2𝑠)×1

, 𝑌𝑡 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑡

𝑦𝑡−1

...

𝑦𝑡−𝑝+1

−−
𝑥𝑡
...

𝑥𝑡−𝑠+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑝+2𝑠)×1

, 𝑈𝑡 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑡

0
...

0

−−
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑝+2𝑠)×1

, B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

−−
𝐼2

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑝+2𝑠)×2
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and

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1 ⋅ ⋅ ⋅ 𝐴𝑝−1 𝐴𝑝 𝐵1 ⋅ ⋅ ⋅ 𝐵𝑠−1 𝐵𝑠

𝐼𝐾 0 0 0 ⋅ ⋅ ⋅ 0 0
. . .

...
...

...
. . .

...
...

0 ⋅ ⋅ ⋅ 𝐼𝐾 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0

𝐼2 ⋅ ⋅ ⋅ 0 0

0
. . .

...
...

0 ⋅ ⋅ ⋅ 𝐼2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(𝐾𝑝+2𝑠)×(𝐾𝑝+2𝑠)

.

Successively substituting 𝑌 yields

𝑌𝑡 = 𝑀𝑡 +

𝑡−1∑
𝑖=0

A𝑖B𝑥𝑡−𝑖 +

𝑡−1∑
𝑖=0

A𝑖𝑈𝑡−𝑖, (8)

where 𝑀𝑡 = 𝐴𝑡𝑌0 +
∑𝑡

𝑖=0𝐴
𝑖
𝝁 consists of terms of an initial value and a deterministic

trend, which are irrelevant for the impulse-response analysis. Let 𝐽 := [𝐼𝐾 : 0 : ⋅ ⋅ ⋅ : 0]

be a (𝐾 × (𝐾𝑝+ 2𝑠)) selection matrix with 𝐽𝑌𝑡 = 𝑦𝑡. Pre-multiplying 𝐽 on both sides

of equation (8) gives

𝑦𝑡 = 𝐽𝑀𝑡 +

𝑡−1∑
𝑖=0

𝐽A𝑖B𝑥𝑡−𝑖 +

𝑡−1∑
𝑖=0

𝐽A𝑖𝐽 ′𝑢𝑡−𝑖

= 𝐽𝑀𝑡 +
𝑡−1∑
𝑖=0

𝐽A𝑖[B : 𝐽 ′]

[
𝑥𝑡−𝑖

𝑢𝑡−𝑖

]
.

(9)

Then, the linear impulse-response function according to equation (6) can be written as

𝑓(ℎ; 𝛿𝑦 , 𝛿𝑥) = 𝐽Aℎ[B : 𝐽 ′]

[
𝛿𝑥

𝛿𝑦

]
. (10)

Given the consistent estimator specified in equation (5), the asymptotic distribution of

the impulse-response function is obtained using the Delta method and is given by

√
𝑇 (𝑓 − 𝑓)

𝑑→ 𝒩 (0, 𝐺ℎΣ∗
𝐴𝐵𝐺

′
ℎ), (11)

where 𝐺ℎ := ∂ vec(𝑓)/∂ vec(𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, 𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑞)
′ and Σ∗

𝐴𝐵 is the top-left 𝐾(𝐾𝑝 +

2𝑠) × 𝐾(𝐾𝑝 + 2𝑠) block of Σ𝐴𝐵. As shown in the Appendix, 𝐺ℎ can be explicitly

written as

𝐺ℎ =

ℎ−1∑
𝑖=0

([
𝛿′𝑥 𝛿′𝑦

] [B′

𝐽

]
(A′)ℎ−1−𝑖⊗ 𝐽A𝑖𝐽 ′

)
. (12)
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In order to compute the long-run effect, we apply Granger’s Representation Theo-

rem to model (1) yielding

𝑦𝑡 = 𝐶

𝑡∑
𝑖=1

⎛
⎝𝑢𝑖 +

𝑠∑
𝑗=1

𝐵𝑗𝑥𝑖−𝑗 + 𝜇

⎞
⎠ + 𝐶1(𝐿)

⎛
⎝𝑢𝑡 +

𝑠∑
𝑗=1

𝐵𝑗𝑥𝑡−𝑗 + 𝜇

⎞
⎠ + 𝑉, (13)

where

𝐶 = 𝛽⊥

(
𝛼′
⊥

(
𝐼𝐾 −

𝑝−1∑
𝑖=1

Γ𝑖

)
𝛽⊥

)−1

𝛼′
⊥ . (14)

Here, 𝐿 is the lag operator and the power series 𝐶1(𝑧) is convergent for ∣𝑧∣ < 1 + 𝜉

for some 𝜉 > 0. 𝑉 depends on initial values, such that 𝛽′𝑉 = 0. The Granger repre-

sentation decomposes the cointegrated process into a random walk term (𝐶 term), a

stationary process (𝐶1 term) and a deterministic term (𝑉 ). Because of the convergence

of the series 𝐶1(𝑧), the response implied by this sub-process will be zero in the long

run. Moreover, since the deterministic term 𝑉 is irrelevant for the impulse response,

the permanent response of the system is determined by the first term in equation (13).

Note that the shock (𝛿𝑦, 𝛿𝑥) causes this term changing by 𝐶(𝛿𝑦 +
∑𝑠

𝑗=1𝐵𝑗𝛿𝑥). Thus,

we can express the permanent response as

𝑓(𝛿𝑥, 𝛿𝑦) := lim
ℎ→∞

𝑓(ℎ; 𝛿𝑦, 𝛿𝑥) = 𝐶

⎡
⎣ 𝑠∑
𝑗=1

𝐵𝑗 : 𝐼𝐾

⎤
⎦[

𝛿𝑥

𝛿𝑦

]
. (15)

Note that given 𝛼 and 𝛽, 𝛼⊥ and 𝛽⊥ are not uniquely identified. However, the

right hand side of equation (14) is invariant with respect to the choice of these bases.

Therefore, 𝑓(𝛿𝑥, 𝛿𝑦) is unique given the parameters and the shock vector in model (1).

In practice, estimated responses and their covariances are obtained by replacing the

unknown parameters in equation (10), (11) and (15) by their estimates.

4 Estimation Results

The underlying order book data contains bid and ask quotes as well as five levels of

depth. Preliminary analyzes show that the depths on the fourth and fifth levels do not

have significant effects on bid and ask quotes. Therefore, in our empirical study, we

only use market depths up to the third level. In order to make the analysis tractable, we

reduce the computational burden induced by the high number of observations by sepa-

rately estimating the model for each of the 43 trading days. This strategy allows us also

to address possible structural changes, e.g., due to stock specific news announcements

or overnight effects. The market impact is then computed as the monthly average of
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individual (daily) impulse response functions. To account for a structural break on

September 1, 2008, due to the change of the tick size for some stocks in our sample,

we treat the two months August and September separately.

For sake of brevity we refrain from presenting all individual results for the 30 ana-

lyzed stocks in this paper. We rather illustrate the analyzed effects for the stock Fortis

(FOR in Table 1) in August 2008. Fortis is one of the most actively traded stocks and is

representative for a major part of the market. The results for the remaining stocks and

the remaining periods are provided in a web appendix on

http://amor.cms.hu-berlin.de/˜huangrui/project/impact_of_orders/. As one

can see in the web appendix and discussed in more detail in Section 5.5, the effects are

qualitatively remarkably similar across the market though the magnitudes of market

impacts differ in dependence of underlying stock-specific characteristics.

The following estimation results are based on a VARX(15, 15) specification which

is selected based on residual diagnostics and information criteria. Testing for serial

correlation using the Ljung-Box test according to Ljung and Box (1978) reveals almost

no remaining serial correlation in the residuals for all regressions based on a 1% level

using ten lags. The corresponding statistics are also recorded in the web appendix.

4.1 Statistical Properties of Market Depth
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Figure 5: Time series of market depth in the order book. Trading of Fortis, Euronext,

Amsterdam, August 1st, 2008.

Figure 5 provides time series plots of depths on the best ask and third best ask

level of the order book for a single (though representative) trading day for Fortis. A

general finding is that the depth behind the market is typically greater than that at

the market. Furthermore, there is evidence for co-movements between the individual
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depth levels, partially because of the “shift” effect induced by aggressive orders, e.g.,

market orders who completely absorb the best price levels.
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Figure 6: Left: Kernel density estimates of market depths. Right: Autocorrelation functions

of market depths. Trading of Fortis, Euronext, Amsterdam.

Figure 6 depicts the unconditional distributions and autocorrelation functions of

log market depth. We observe that the distributions of depths behind the market are

similar, though they are quite different from those at the market. The same pattern

is also observed for the autocorrelation functions. These empirical peculiarities are

obviously due to the fact that there is more order activity at the market than behind

the market. Consequently, market depth is more frequently changed at the best level

inducing a lower persistence than at higher levels. This might also explain why the

unconditional distribution of depth is more dispersed than that of depth behind the

market.

4.2 Estimated Cointegration Relationships

For sake of brevity, we refrain from showing the individual estimates of A and B. Ul-

timately, the effects induced by A and B are revealed by the impulse response analysis

shown below. Nevertheless, it is interesting to highlight the estimated cointegration

relationships. According to Johansen’s trace statistics we identify seven cointegration

relationships. Table 4 shows the estimated cointegrating vectors for a representative

trading day. They are ordered according to their corresponding eigenvalues reflecting

their contributions to the likelihood function. Figure 7 depicts the time series of the

corresponding cointegration relationships. It turns out that the estimated cointegra-

tion relationships are quite different from the simple difference between ask and bid

quotes yielding the bid-ask spread and shown in Figure 7. Compared to the spread
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Variable 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

𝑝𝑎 -0.9982 1.0000 -1.0000 -0.9999 -1.0000 1.0000 0.9457

𝑝𝑏 1.0000 -0.9864 0.9978 1.0000 0.9837 -0.6954 -1.0000

𝑣𝑎,1 -0.0205 -0.1328 0.0398 0.0285 0.0692 -0.0976 -0.0746

𝑣𝑎,2 0.0078 0.0396 -0.0344 -0.0664 0.1399 -0.6558 -0.3732

𝑣𝑎,3 -0.0073 -0.0102 0.0267 0.0143 -0.2263 -0.6543 -0.3146

𝑣𝑏,1 -0.0081 0.1334 0.0339 0.0635 0.0392 0.0863 -0.0652

𝑣𝑏,2 0.0002 -0.0462 -0.0556 0.1328 -0.0207 0.8649 -0.2855

𝑣𝑏,3 0.0000 0.0288 0.0367 -0.1859 -0.0558 0.9881 -0.2033

Table 4: Representative estimates of the cointegrating vectors. The vectors are sorted accord-

ing to their corresponding eigenvalues. Trading of Fortis at Euronext, Amsterdam.

which reflects a very discrete behavior, the cointegration relationships are much more

“smooth”. We also tested whether the estimated cointegration relationships are indeed

different from the bid-ask spread, i.e., 𝑅′𝛽 = 0 with 𝑅 = [1, 1, 0, . . . , 0]′. The corre-

sponding likelihood ratio test as described in Section 3.1 rejects this hypothesis at 1%

significance level for all regressions (except one).

Interpreting the estimated cointegrating vectors we can derive several interesting

implications. The first five cointegration relationships are mostly linear combinations

of spreads and depths. Specially, the first one is quite similar to the pure bid-ask spread

since the coefficients for the depth variables are comparably small. The second cointe-

gration relationship seems to involve the balance of market depth since the coefficients

of 𝑣𝑎,1 and 𝑣𝑏,1 are similar in magnitude and opposite in sign. The most interesting

relationships are implied by the last two cointegrating vectors in which the coefficients

associated with the quotes are quite different and relatively large. This indicates that

depth has a significant impact on the long-term relationship between quotes. Intu-

itively, the connection between ask and bid quotes becomes weaker (and thus deviates

from the spread) if the depth is less balanced between both sides of the market. Hence,

depth has a significant impact on quote dynamics and should be explicitly taken into

account in a model for quotes. These findings support the idea of a cointegration model

for both quotes and depth.
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Figure 7: Time series of estimated cointegration relationships. The corresponding cointegrat-

ing vectors are documented in Table 4. Trading of Fortis at Euronext, Amsterdam, August 1st,

2008.

5 Estimated Market Impact

5.1 Limit Orders Placed At or Behind the Market

We start by considering the impact of an incoming at-the-market limit order as de-

scribed in Scenario 1 in Section 3.2. Figure 8 shows the impulse responses induced by

ask and bid limit orders with a size equal to half of the depths on their corresponding
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Figure 8: Percentage changes of ask and bid quotes induced by incoming bid/ask limit orders

placed at the market (level one) with a size equal to the half of the depth on the first level.

The marked number on the vertical axes indicates the magnitude of the permanent impact.

The blue dotted lines indicate the corresponding 95%-confidence intervals. Trading of Fortis at

Euronext, Amsterdam. LO: limit order.

best levels.6 The impulse response function starts at zero since such a limit order does

not directly change best ask and bid quotes. As expected, both ask and bid quotes tend

to increase (decrease) significantly after the arrival of a bid (ask) limit order. Induced

by the cointegration setting, the quotes naturally converge to a (new) permanent level

at which the information content of the incoming limit order is completely incorporated.

The confidence intervals reflect that the shift is statistically highly significant.

We observe that quotes adjust relatively quickly reaching the new level after approx-

imately 20 lags. Recall that time is measured in terms of limit order book activities.

Hence, the adjustment speed measured in physical time ultimately depends on the un-

derlying frequency of order activities and differs across the market. However, the fact

that the speed of stock-specific quote adjustments (in terms of a “limit order clock”) is

widely stable across the market, indicates that such a business time scale is appropriate

for market-wide comparisons across stocks.

An interesting fact is that bid quotes tend to increase more quickly than ask quotes

after the arrival of a bid limit order. A reverse effect is observed after the arrival of

an ask limit order. This asymmetry introduces a one-sided and temporary decrease of

6In all figures illustrating impulse responses, the legend “A → B” is interpreted to reflect “the

impact on B induced by A”.

23



the bid-ask spread. We explain this phenomenon by the fact that impatient traders

observing an incoming limit order on the same side of the market tend to post more

aggressively to liquidate their positions or increase the execution probabilities thereof.

As a result, they place limit orders inside the spread shifting bid quotes upward. More-

over, the higher liquidity supply on the bid side generates a (delayed) liquidity demand

on the ask side shifting ask quotes upward as well. We thus refer this phenomenon to

be a liquidity-motivated effect.

Our findings can be interpreted in terms of pure market mechanisms. The market

equilibrium is perturbed by a limit order in two ways. On one hand, the limit order

indicates an investor’s willingness to buy or sell and thus increases supply or demand of

the underlying asset. The market price changes in order to incorporate this temporary

imbalance of supply and demand. One the other hand, an incoming limit order increases

the supply of liquidity in the market. Narrowing of the spread reduces transaction costs

and causes a re-balancing of supply and demand of liquidity.

The significant long-term effect induced by an incoming limit order indicates that

it contains private information on the value of assets. This finding is in contrast to the

common assumption in theoretical literature that informed traders only take liquidity

but do not provide it. On the other hand, it is supported by the experiment by

Bloomfield, O’Hara, and Saar (2004) showing that informed traders use order strategies

involving both market orders and limit orders to optimally capitalize their informational

advantage.

Given the setting of the book we observe that a limit order increasing first level

depth by 50% shifts quotes by 0.5-0.6 basis points. Though this is generally rather

small, it is economically significant if the tick size is small. Obviously, these magnitudes

ultimately depend on the (relative) order size as well as on underlying stock specific

characteristics. The impact of the latter will be discussed in more detail in Section 5.5.

In order to explore the role of the order’s position in the book, Figure 9 depicts the

bid prices’ reactions induced by incoming bid limit orders placed at the market (level

one) and behind the market (level two and three).7 We observe a negative correlation

between the magnitude of price reactions and the orders’ distance from the spread. The

at-the-market limit order induces significantly faster market reactions than the behind-

the-market limit order. Nonetheless, the long-term impact of level one and level two

limit orders is only approximately 20% smaller. Hence, it turns out that behind-the-

7The sizes of the orders are assumed to be the same. Nonetheless, the ultimate magnitudes of shocks

are different since we assume that the initial order book equals to the monthly average in which the

depth on level two and three are approximately 1.5 times of that on level one.
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Figure 9: Percentage changes of bid quotes induced by incoming bid limit orders placed at the

market (level one) and behind the market (level two and three). The order size equals to half

of that at the best bid. The initial order book equals to the corresponding monthly average

shown in Table 1. The marked number on the vertical axes indicates the magnitude of the

permanent impact. Trading of Fortis at Euronext, Amsterdam. L1: level one. L2: level two.

L3: level three. LO: limit order.

market orders can significantly shift the market though the quote adjustment is slower.8

This result holds for level two orders and (to a weaker extent) for level three orders.

However, for orders posted deeper in the book virtually no market impacts can be

identified.

Eom, Lee, and Park (2009) find evidence that traders could have made extra profits

using microstructure-based manipulations on the Korean Exchange (KRX) during a

period between 2001 and 2002. In this period, KRX disclosed the total quantity on

each side of the order book without fully disclosing the prices at which these orders have

been placed. The manipulation strategy resulted in placing huge numbers of behind-

the-market limit orders on the opposite side of the market inducing price moves in the

favorite direction without having these orders executed. Our finding shows that this

kind of manipulation is indeed possible. However, whether it is economically profitable

in Euronext Amsterdam ultimately depends on (relative) order sizes. In order to move

prices in her favorite direction, the trader has to submit rather big limit orders close to

the market. Then, she obviously faces the risk that these orders are likely to be picked

8In order to improve the graphical illustrations, we refrain from showing the corresponding confi-

dence intervals. They are quite similar to those shown in Figure 8.
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Figure 10: Left: Percentage changes of bid and ask quotes induced by incoming bid limit

orders placed inside of the spread with a size equal to half of the depth at the best bid. Right:

Percentage changes of the bid quote induced by incoming bid limit orders placed inside of the

spread with different sizes. The bid limit orders increase the bid price by 0.1%. The initial

order book equals to the corresponding monthly average shown in Table 1. Small size: 50% of

the depth at the best bid. Mid size: 10 times of the depth at the best bid. Big size: 50 times

of the depth at the best bid. Trading of Fortis at Euronext, Amsterdam. LO: limit order.

up.

5.2 Limit Orders Placed Inside Of the Spread

Limit orders placed inside of the bid-ask spread perturb the order book dynamics in

a more complex way. Apart from providing liquidity to the order book, they directly

improve the best quotes. This quote adjustment induces a reduction of the spread,

establishes a new best quote level and correspondingly shifts all depth levels on the

corresponding side of the book upward (or downward, respectively). The system seeks

the new equilibrium on a path recovering from the immediate quote change and simul-

taneously re-balancing liquidity. Given our setting, we assume that a bid limit order

inside of the spread induces an automatic 0.1% increase of the best bid quote. However,

as shown in the left plot of Figure 10, the long-run price impact is just 0.04%. Hence,

the immediate quote movement is reverted back by approximately 60%. This is in-

duced either by sell trades picking up the posted volume or by cancellations on the bid

side. Similarly, liquidity demand on the ask side shifts the ask quote upward by 0.04%.

Hence, overall we observe an asymmetric re-balancing of quotes and a corresponding

re-widening of the spread.

The right plot of Figure 10 compares the effects of incoming bid limit orders of
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different sizes but with same limit price posted inside of the bid-ask spread and thus

improving bid quotes again by 0.1%. Interestingly, we observe quite different impulse

response patterns in dependence of the order size. In case of a comparably small order,

the posted volume is obviously quickly picked up, shifting the bid quote back. Hence,

similar to the effect shown in the left plot of Figure 10, the automatic quote improve-

ment is reverted back by more than 60%. In contrast, large volumes overbidding the

prevailing quote cause a long-term upward movement of the bid quote. Relative to

the initial shift of the bid price we observe a further approximately 35% price increase.

Hence, extraordinary large orders are not likely to be picked up and rather induce

strong buy pressure moving the market upwards. For smaller (though still compara-

bly large) orders, adverse selection and signaling effects seem to counterbalance each

other. As a consequence, the bid quote is hardly changed and the long run effect is

close to the immediate price improvement. Note that in this particular example, the

monthly average spread is approximately 0.14% implying that the hypothetical limit

order improving the bid quote by 0.1% is indeed very aggressive. Consequently, it is

very likely to be picked up by market orders and thus its size must be quite huge to

effectively shift the market. As shown in the web appendix, for less aggressive limit

orders placed inside of the bid-ask spread, smaller order sizes are sufficient to induce

signaling effects and to ultimately “scare” the market.

5.3 Market Impact of Trades

Figure 11 shows the market impacts induced by incoming bid (buy) and ask (sell)

market orders. We assume that the trade sizes correspond to 50% of the prevailing

depth. Consequently, these market orders do not “walk up” (or down, respectively) the

book and thus best ask and bid quotes are unaffected. Hence, the quote adjustments

shown in Figure 11 are subsequent quote responses to trade arrivals. Both the bid

and ask quotes increase (decrease) sharply after the arrival of a buy (sell) market

order. Hence, the arrival of a buy (sell) market order induces aggressive posting on

the bid (ask) side resulting in further buy (sell) market orders and bid (ask) limit

orders posted inside of the spread. Similar to the findings for limit orders, we find

evidence for asymmetric adjustments of the two sides of the market. It turns out that

bid (buy) market orders shift the ask quote more quickly and strongly than the bid

quote. The reverse is true for ask (sell) market orders. This result indicates that trades

temporarily increase the spreads which is in contrast to the effects induced by limit

orders. Engle and Patton (2004) report similar findings by analyzing quote data from

the NYSE. They show that trades have a positive impact on spreads, but do not identify
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Figure 11: Percentage changes of ask and bid quotes induced by incoming bid/ask (buy/sell)

market orders with a size equal to half of the depth on their corresponding first levels. The

marked number on the vertical axes indicates the magnitude of the permanent impact. Trading

of Fortis at Euronext, Amsterdam. MO: Market order.

whether this impact is permanent or only transitory. Using impulse-response analysis

based on a structural VEC model, Escribano and Pascual (2006) also find that spreads

(permanently) widen after the arrival of trades. Note that these effects contradict

implications of asymmetric information based market microstructure models, such as

Glosten and Milgrom (1985) and Easley and O’Hara (1992), where trades should resolve

the uncertainty regarding existing information and should result in declining spreads.

The left plot of Figure 12 depicts the quote reactions induced by an aggressive

market order “walking up” the book (Scenario 4 in Section 3.2). It absorbs the best

ask level and shifts the best quote to the originally second best level which is assumed to

be 10 basis points higher than the previous best ask. Similarly to the effects induced by

aggressive limit orders we observe that the initial shift of the best ask is reverted back by

approximately 35% inducing a long-run ask increase of 6.4 basis points. Simultaneously,

aggressive posting on the bid side shifts bid quotes upward. Hence, the initially widened

spread reverts back in an asymmetric way causing more quote movements on the bid

side than on the ask side. The responses mirror the corresponding effects induced by

aggressive bid limit orders (cf. Figure 10), where the spread is initially narrowed and

then asymmetrically re-widened causing also more movements on the bid side than on

the ask side.

The right plot of Figure 12 compares the market impacts on the ask quote induced
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Figure 12: Left: Percentage changes of bid and ask quotes induced by an aggressive bid

(buy) market order with a size exceeding the depth at the best ask by 20%. The second best

ask price is assumed to be 0.1% higher than the best ask, where the depths behind the market

are 1.5 times of the depth at the market. Right: Percentage changes of the ask quote induced

by an aggressive bid (buy) market order with a size equal to the depth at the best ask when

there is different depth at the second best level. Case 1: the depth at the second best ask level

is 10% of that at the best ask; Case 2: the depth at the second best ask level equals to that at

the best ask level; Case 3: the depth at the second best ask level is 500% of that at the best

ask. The marked number on the vertical axes indicate the magnitude of the permanent impact.

Trading of Fortis at Euronext, Amsterdam. MO: Market order.

by a buy market order in situations of different depth behind the market. It is assumed

that the order just absorbs the first ask level and thus induces an instantaneous ask

price increase by 10 basis points. In line with the results discussed above, in all three

scenarios the initially shifted ask quote is reverted back. However, it turns out that

the magnitude of this quote reversion critically depends on the prevailing depth behind

the market. In fact, the existence of a huge level two depth reverts the ask quote back

by approximately 55%. We explain this fact by a strong sell pressure induced by huge

sell volume queued on the ask side. Conversely, in case of only small prevailing depth

behind the market, the existing sell pressure is obviously weaker causing the incoming

buy order to (upward) shift the market more strongly. In the extreme case of a very

thin market, we even observe a temporary additional quote increase.

A practical problem faced by many market participants is the fundamental choice

between posting a market order or a limit order. A direct comparison of the market

impacts induced by these two types of orders is shown in Figure 13. In both cases, the

posted order does not directly change the best quote. We observe that the resulting
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Figure 13: Percentage changes of ask and bid quotes induced by a bid (buy) market order

and a bid limit order of similar size placed at the market. The order size is half of the depth

at the best bid. The depths at the best bid and the best ask in the order book are assumed to

be equal. LO: limit order; MO: market order.

long-run effect of trades is significantly greater than that of an equal-size limit orders.

Actually, the price shift induced by a market order is approximately four times larger

than that of a comparable limit order. Moreover, market orders also cause quicker

market reactions. Finally, inferring from the “gap” between ask and bid curves, it

is shown that market orders change the spread more dramatically than limit orders.

Hence, the willingness to cross the bid-ask spread is obviously a stronger signal for

private information than that induced by a comparable limit order.

Note that the comparison holds for “normal” order types placed on the best quote,

but not necessarily for more aggressive orders. As discussed above, the long-term

effects of aggressive limit orders and market orders critically depend on their (relative)

size and the current state of the book. Therefore, an ultimate comparison of market

impacts induced by both types of orders under comparable conditions is rather difficult.

Nevertheless, our results show that limit orders do have a significant long-term effect

and can significantly “scare” the market.

5.4 Robustness of Results

Selecting the appropriate lag order in VARX models is cumbersome in practice when a

substantial cross-section of stocks is analyzed over a comparably long period. In order

to analyze the sensitivity of our results regarding the choice of the lag order in the

30



0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 10

−3

0.00519

0.00488

Event time

P
er

ce
nt

ag
e 

of
 P

ric
e 

C
ha

ng
e

Bid LO → Ask in VARX(15,15)
Bid LO → Bid in VARX(15,15)
Bid LO → Ask in VARX(6,10)
Bid LO → Bid in VARX(6,10)
Permanent impact in VARX(15,15)
Permanent impact in VARX(6,10)

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.0237

0.0216

Event time
P

er
ce

nt
ag

e 
of

 P
ric

e 
C

ha
ng

e

Bid MO → Ask in VARX(15,15)
Bid MO → Bid in VARX(15,15)
Bid MO → Ask in VARX(6,10)
Bid MO → Bid in VARX(6,10)
Permanent impact in VARX(15,15)
Permanent impact in VARX(6,10)

Figure 14: Robustness of results. Market impacts of a bid limit order estimated by a

VARX(15, 15) and a VARX(6, 10) specification. Trading of Fortis, Euronext Amsterdam.

VARX model, Figure 14 compares the market impacts of a bid limit order and that

of a normal buy market order predicted by a VARX(15, 15) model with those induced

by a VARX(6, 10) specification using trading of Fortis in August, 2008. It turns out

that despite a misspecification of the lag length and remaining serial correlation in the

residuals, the impulse response estimates of a VARX(6, 10) are quite close to that of a

VARX(15, 15). This is in line with results reported by Jorda (2005) using a VAR(2) to

estimate impulse-response functions of an underlying VAR(12) model.

5.5 Cross-Sectional Evidence

The complete empirical analysis has been conducted for 29 other stocks traded at Eu-

ronext Amsterdam using a VARX(15, 15) specification. The corresponding results are

shown in the appendix on the companion web site at

http://amor.cms.hu-berlin.de/˜huangrui/project/impact_of_orders/. It turns

out that the results reported in the previous sections are qualitatively stable and rep-

resentative for a wide cross-section of stocks. Nevertheless, we observe that the mag-

nitudes of market impacts vary across the market and seem to be driven by underlying

liquidity characteristics. To gain insights into these relationships, we run a simple cross-

sectional regression of absolute average market impacts on the average stock-specific

trading frequency, trading volume as well as the minimum tick size. I.e.,

𝑀𝑖 = 𝛾0 + 𝛾1𝑁𝑖 + 𝛾2𝑆𝑖 + 𝛾3𝑉𝑖 + 𝜀𝑖, (16)
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where 𝑀𝑖 denotes the absolute permanent impact of stock 𝑖 induced by a bid/ask limit

order, 𝑁𝑖 is the average number of trades per day, 𝑆𝑖 represents the normalized tick

size, and 𝑉𝑖 denotes the normalized transaction volume per day. Particularly,

𝑆 =
tick size × 100

the average of closing prices
, 𝑉 =

adjusted trading volume per day

number of outstanding shares
× 100.

The scenarios we consider below are similar to those studied in Section 3.2. The initial

order book for each stock equals its monthly average.

Scenario “normal limit order” and “normal market order” : These scenarios

are identical to that in Section 3.2.

Scenario “aggressive limit order” : An incoming order of a size which is half to

the depth at the corresponding best price is posted inside of the spread and

improving the corresponding quote by one tick.

Scenario “aggressive market order” : An incoming market order with a size equal

to the depth at the corresponding best price and thus absorbing the first level in

the book.

Scenario 𝛾0 𝛾1 𝛾2 𝛾3 𝑅2

“normal limit order” 0.0033 −0.0013 0.0419 – 0.67
(13.25) (−6.65) (21.84)

0.0026 −0.0015 0.040 0.0012 0.72
(11.28) (−9.75) (21.17) (8.2)

“aggressive 0.005 −0.0017 0.095 – 0.77
limit order” (9.42) (−5.26) (14.97)

0.0041 −0.002 0.0933 0.0015 0.79
(9.63) (−6.65) (14.23) (7.19)

“normal market order” 0.034 −0.014 0.14 −− 0.53
(23.97) (−9.45) (4.71)

0.027 −0.0168 0.1257 0.013 0.65
(16.73) (−17.94) (4.04) (7.67)

“aggressive 0.0463 −0.0181 0.4488 −− 0.66
market order” (21.89) (−8.40) (11.15)

0.0358 −0.0214 0.4242 0.0178 0.74
(14.76) (−16.07) (10.57) (7.24)

Table 5: Parameter estimates based on equation (16). The numbers in brackets denote

heteroskedasticity robust 𝑡−statistics according to White (1980).

For every scenario, we consider average market impacts of both bid and ask or-

ders for 30 stocks estimated over two months resulting in 120 observations for each
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regression. Table 5 reports the corresponding estimation results for two versions of the

model: one with included trading volume and one without.

The high 𝑅2 values, ranging between 65% and 79%, show that most of the cross-

sectional variation of market impact can be indeed explained by the three explanatory

variables. It turns out that the trading volume (though its parameter is significant)

does not provide much explanatory power. This result indicates that the trading fre-

quency rather than the trade size drives the strength of market responses to limit order

arrivals. Furthermore, we observe that the trading frequency has a negative influence

on the market impact of limit orders. Hence, in case of a slower trading, a single order

obviously conveys more information.

The tick size is positively related to the magnitude of permanent impacts in all

scenarios. For aggressive limit orders, this finding is not surprising as the implied price

improvement is (relatively) higher for stocks trading on larger tick sizes. Since in these

cases, also the spreads between best and second best quotes are higher, the immediate

price shift by the arrival of an aggressive market order is larger as well. In the scenarios

“normal limit order” and “normal market order”, a higher tick size and thus an increase

of the price discreteness makes it more likely that investors are forced to under-react

or over-react in response to incoming information inducing higher deviations between

quoted prices and the “true” underlying efficient price. Our findings show that in these

situations, investors rather tend to over-react after the arrival of a limit order.

6 Conclusions

In this paper, we quantify the market impact of incoming limit orders in a limit order

book market. Best bid and ask quotes as well as three levels of depth on both sides of

the market are modelled based on a cointegrated VAR system. Incoming limit orders

are represented in terms of shocks to the system. Limit order characteristics as well

as the corresponding state of the book are captured by the specific design of the shock

vector. This allows us to distinguish between limit orders of different aggressiveness

(reflected by their distance to the market) and different sizes as well as between different

states of the book. The market impacts on ask and bid prices are quantified by the

estimated impulse response function using appropriate statistical inference.

Employing this modelling framework we analyze the limit order book processes of

30 stocks traded on Euronext Amsterdam over two months in 2008. The model is esti-

mated using the highest possible frequency accounting for all order book changes during

continuous trading. Parameter estimates and diagnostics indicate that the proposed
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model captures the high-frequency order book dynamics quite well.

Based on the empirical analysis we can summarize the following findings: First, we

find clear evidence for cointegration relationships between ask and bid quotes and cor-

responding depths. While some cointegration relationships are similar to the bid-ask

spread, others show that depth has a distinct effect on quote dynamics and on the con-

nection between ask and bid quotes. Second, limit orders do have significant long-term

effects on quotes. This is even true for limit orders placed behind the market though

these effects decline with the limit order’s distance to the market. While incoming limit

orders temporarily decrease the spread, market orders induce a temporary widening.

Third, the speed of spread convergence as well as the direction of price movements

after the arrival of aggressive limit orders undercutting (or overbidding, respectively)

best ask and bid prices depends strongly on the incoming limit order’s size. While

small orders seem to face adverse selection risks and are likely to be picked up quickly,

for larger orders information signaling effects seem to dominate pushing the market

in the opposite direction. Fourth, the decrease (increase) of spreads after the arrival

of an aggressive limit (market) order is reverted back asymmetrically inducing more

quote movements on the side where the order has been placed. Fifth, the long-run

market impact of aggressive market orders walking up (or down) the book is the lower

the larger the queued depth behind the market. Sixth, the effects are qualitatively

remarkably stable over the cross-section of the market. Variations in the magnitudes of

market impacts are well explained by the underlying stock-specific trading frequency

and minimum tick size.

Our empirical results also show that the proposed framework is useful and appro-

priate to capture order book dynamics on high frequencies. By modelling quotes and

several levels of depth the model implicitly captures also the multivariate dynamics

of mid-quotes, returns, spreads, spread changes as well as depth imbalances. In this

sense, the suggested high-frequency cointegrated VAR model can serve as a workhorse

for various applications in this area.
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A Adaptive time window matching algorithm

In our database, transaction data and order book data are recorded in separate files

stemming from different recording systems. As a result, the time stamps in the two data

sets have different time distances to exchange time. In accordance with the institutional

settings of Euronext, we design an adaptive time window matching algorithm which

contains three main steps.

Step 1 Exact matching. The algorithm picks up a time stamp of a trade and opens

a specified time window, e.g. [−10, 10] seconds around this time stamp. Then, a

procedure picks every order book record in this time window and performs the

following analysis: If (i) the trade price equals to the best bid (ask) price and

the difference of the best bid (ask) size between this order book record and the

previous one equals to the trade size or (ii) the trade price equals to the previous

best bid (ask) price, the best bid (ask) size equals to the trade size and the best

bid (ask) price decreases (increases), it matches this order book record with the

corresponding trade and records the delay time between the trade and the order

book. If no match is achieved for all order book records in the time window, the

trade remains to be unmatched.

Step 2 Inexactly matching. The algorithm picks up an unmatched trade record’s

time stamp and opens a time window of size which is twice the average delay

time computed in Step 1. If (i) the trade price equals to the best bid (ask) price

and the best bid (ask) size is less than the previous one or (ii) the best bid (ask)

price decreases (increases), it matches the trade with the current order book. If

no match is achieved for all order book records in the time window, the trade

remains to be unmatched.

Step 3 Round time matching. The algorithm picks up an unmatched trade and

matches it with an order book record that is closed to the trade’s time stamp

plus the average delay time.
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B Proof of Equation (12)

Recall three useful standard results (see, e.g., in the appendix in Lütkepohl (2005)) for

any comfortable matrices 𝐴,𝐵,𝐶,𝐷 and vector 𝑎

vec(𝐴𝐵𝐶) = (𝐶 ′ ⊗𝐴) vec(𝐵), (B.1)

(𝐴⊗𝐵)(𝐶 ⊗𝐷) = 𝐴𝐵⊗𝐶𝐷, (B.2)

∂ vec𝐴ℎ

∂𝑎′
=

[
ℎ−1∑
𝑖=0

(𝐴′)ℎ−1−𝑖⊗𝐴𝑖

]
∂ vec(𝐴)

∂𝑎′
. (B.3)

Let Ψ denote [𝐵 : 𝐽 ′]

[
𝛿𝑥

𝛿𝑦

]
and 𝑎 := vec(𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑝, 𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑞). We first note that

𝑎 = vec(𝐽A)

and
∂ vecA

∂𝑎′
=
∂ vec(𝐽 ′𝐽A)

∂𝑎′
=

(
𝐼𝐾𝑝+2𝑠⊗ 𝐽 ′

)
, (B.4)

where we use (B.1) and the fact that ∂ vec(𝐽A)/∂𝑎′ = 𝐼. By further elaborating on

(B.3), we have

𝐺ℎ =
∂ vec(𝐽AℎΨ)

∂𝑎′
= (Ψ′⊗ 𝐽)

∂ vec(Aℎ)

∂𝑎′

= (Ψ′ ⊗ 𝐽)

[
ℎ−1∑
𝑖=0

(𝐴′)ℎ−1−𝑖⊗𝐴𝑖

]
∂ vec(𝐴)

∂𝑎′
.

Equation (12) is found by inserting (B.4) and applying (B.2).
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