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Abstract: 
We study price pressures in stock prices—price deviations from fundamental value due to a 
risk-averse intermediary supplying liquidity to asynchronously arriving investors. 
Empirically, twelve years of daily New York Stock Exchange intermediary data reveal 
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The ability and cost to trade large quantities quickly, often referred to as liquidity, plays a

fundamental role in facilitating risk-sharing and allocating resources in asset markets. For example,

Pastor and Stambaugh (2003) show that liquidity is a priced factor in stock prices and Gavazza

(2009) shows that liquidity affects asset prices and utilization in the aircraft market. Furthermore,

Levine and Zervos (1998) show that more liquid financial markets increase investment, productivity,

and economic growth. Illiquidity can arise for both informational and non-information reasons.

Investor demand to trade quickly may move prices permanently due to information, e.g., Evans

and Lyons (2002), and temporarily for other reasons, e.g., Kraus and Stoll (1972). Investors’

trading demands temporarily distorting prices away from fundamental values, often referred to as

price pressure, has been established in specific instances, but systematic evidence has been elusive.

We use 12 years of daily position data from intermediaries on the New York Stock Exchange

(NYSE) to measure the amount of liquidity supplied and to characterize the magnitude of price

pressures in terms of size, frequency, and duration; these determine the costs investors face when

trading large quantities and the effect of investor liquidity demand on the efficiency of prices. We

also construct a model that identifies the intermediary’s risk aversion and investors’ private value

distribution from the observed time series patterns of price pressures. These enable decomposition

of trading costs and estimation of the social costs (deviations from constrained Pareto efficiency)

due to price pressure.

We follow Campbell, Grossman, and Wang (1993) and Pastor and Stambaugh (2003) to focus

on the aspect of liquidity associated with temporary price changes induced by order flow (investor

net buying or selling). These price pressures arise from shocks to agents’ consumption, investment,

labor, and other opportunities resulting in liquidity or hedging needs, as in Grossman and Miller

(1988). Asynchronous stochastic arrivals by impatient agents unwilling to bear the costs of con-

stantly monitoring the market naturally leads to an intermediary who stands ready to both buy and

sell (Townsend (1978)). The intermediary offers buyers and sellers quick exchange (Demsetz (1968))

and temporarily leans against the wind to match asynchronously arriving buyers and sellers across

time (Weill (2007)).1 Stoll (1978) and Grossman and Miller (1988) emphasize that price pressure

differs from the bid-ask spread, which measures the intermediary’s return if she simultaneously

1Duffie, Gârleanu, and Pedersen (2005) and others model search and trading in decentralized over the counter
markets.
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crosses (executes on both sides of) the trade, one at the bid and the other at the ask.2

Price pressures equilibrate liquidity demand and liquidity supply by compensating liquidity

providers for bearing risk while supplying immediacy to liquidity demanders. Thus, measures of

both liquidity demand and liquidity supply are suitable for characterizing price pressure. Empirical

evidence from situations with large investor liquidity demands demonstrates that price pressures

can be large.3 However, long time series of aggregate investor liquidity demand are not available.

Prior empirical work on liquidity supply using intermediaries’ inventory positions finds support for

risk management via inventory control, but weak support for inventories causing price pressure.4

To estimate price pressures arising from liquidity supply we employ intermediary data from the

New York Stock Exchange from 1994-2005. Market makers who act as intermediaries to supply

liquidity on the NYSE, called specialists, are required to report their positions in every security

every day. To link these inventory positions with price pressures we use the Kalman filter to

estimate a state space model that decomposes stock prices into their fundamental value and ‘noise’:

the random walk component and the stationary component. The stationary component represents

pricing error around the fundamental value. The estimation allows the NYSE intermediaries’

inventory level to enter directly into the price equation via the stationary noise component. The

coefficient on inventory represents the transitory impact of a dollar of intermediary inventory, which

we refer to as the conditional price pressure. The standard deviation of the inventory characterizes

the frequency of price pressure. Combining the conditional price pressure with its frequency and

duration yields the average price pressure which we refer to as the transitory volatility due to price

2Grossman and Miller (1988, p.630) also criticize another empirical measure of the liquidity, the liquidity ratio,
which is defined as the ratio of average dollar volume of trading to the average price change during some interval.
The reciprocal of this, often referred to as the illiquidity ratio, is subject to their same critiques.

3Kraus and Stoll (1972) provide some of the first evidence on liquidity demands from block trades causing price
pressure. Harris and Gurel (1986) and subsequent papers on additions to the S&P 500 index find evidence for price
pressure. Greenwood (2005) extends this with an examination of transitory price effects upon a weighting change to
the Nikkei 225. Coval and Stafford (2007) examine price pressures due to mutual fund redemptions. Less directly
Campbell, Grossman, and Wang (1993) examine how price pressures leads to stocks’ return autocorrelations declining
with trading volume. Gabaix, Gopikrishnan, Plerou, and Stanley (2006) examine how price pressures by institutional
investors can theoretically affect stock market volatility. Brunnermeier and Pedersen (2008) provide a theoretical
model where price pressures affect intermediary capital positions due margin requirements. This can require the
intermediary to reduce leverage causing feedback effects in price pressures.

4Madhavan and Smidt (1991), Madhavan and Smidt (1993), and Hasbrouck and Sofianos (1993) employ NYSE
intermediary inventory data and find evidence supporting risk management, but not price pressure. Hendershott
and Seasholes (2007) use a long time series of NYSE data to find cross-sectional evidence of both inventory control
and price pressure: a portfolio of stocks where the intermediary is long outperforms a portfolio of stocks where the
intermediary is short by 45.4 basis points over two weeks. Our findings extend this portfolio approach to determine
the price pressure per dollar of inventory, the average impact of price pressure on stocks’ volatility, and the social
costs of price pressure.
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pressure.

The conditional price pressure for the largest-quintile stocks is 0.02 basis points per one thousand

dollars of intermediary inventory.5 For the smallest-quintile stocks one thousand dollars of inventory

results in 1.01 basis points of price pressure. The small conditional price pressure in large stocks

is associated with greater frequency of price pressure: the standard deviation of inventory is $1.1

million for the largest stocks versus $165 thousand for the smallest stocks. Inventory positions

causing price pressures last longer in small stocks: the half-life of intermediary inventory is 0.55

days for the largest stocks and 2.11 days for the smallest stocks. Combining the conditional size,

frequency, and duration of price pressures produces estimates of the daily transitory volatility due

to price pressure that range from 0.17% for the largest stocks to 1.20% for smallest stocks. Price

pressure contributes substantially to daily volatility in stock prices in small stocks as the average

ratio of transitory volatility due to price pressure to permanent volatility is greater than one.

To further understand price pressures we construct a single-asset theoretical model of liquidity

supply with stochastically arriving investors with less than perfectly elastic demands to trade. In

the infinite-horizon recursive model the intermediary dynamically chooses the prices at which she

is willing to buy and sell, the bid and ask prices, respectively. When the intermediary is at her

desired inventory position in a security the bid and ask prices symmetrically straddle the security’s

fundamental value. If a seller then arrives the intermediary buys and her position, also referred to

as her inventory level, is higher than desired, exposing her to idiosyncratic price risk. To mitigate

this risk the intermediary then stochastically mean reverts her inventory by applying price pressure:

she adjusts both the bid and ask prices downward to induce more investor buying selling. In doing

this the intermediary bears the cost of setting the average of the bid-ask quotes, the midquote

price, to be below the fundamental value. The size of the deviation of the midquote price from the

fundamental value is our theoretical and empirical measure of price pressure.

The main innovation of our theoretical approach is to facilitate estimation of the risk aversion

of the intermediary and social welfare lost due to deviations from constrained Pareto efficiency.

The model together with the time series properties of price pressure identifies low risk aversion for

the intermediaries, a 0.10 coefficient of relative risk aversion, and deviations from Pareto efficiency

of 0.35 basis points of the value traded. The low risk aversion could arise from risk tolerant capital

5Throughout we focus on the idiosyncratic inventory positions as hedging of the systematic inventory risk can be
accomplished relatively inexpensively via futures and exchange traded funds based on stock market indices.
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migrating to the intermediation sector or be a sign of an agency conflict between firm and the

individual traders it employs to act as intermediaries. If the traders have limited liability, then

they may be willing to take more risky bets than the firm’s owners would prefer.

1 Empirical price pressure and inventory dynamics

Markets where investors do not continuously monitor and participate deviate from the standard

Walrasian tradition (Townsend (1978), Grossman and Miller (1988), Rust and Hall (2003), and

many others). Historically, the NYSE assigns one intermediary, called a specialist, to act as an

market maker for each stock. This structure clearly identifies the amount of liquidity supplied by

an intermediary. We use data on these intermediaries’ inventory positions to identify price pres-

sure both in the cross-section and through time. While the designation of a single intermediary

is relatively unique to the NYSE, the fundamental economic forces that generate prices pressure

and intermediary inventory risk exist in all markets where investor trading needs are not perfectly

synchronized. Section 3 further discusses the NYSE structure and changes to that structure subse-

quent to our sample period. Before any estimations we discuss the data and provide some summary

statistics.

1.1 Data and summary statistics

We use data from the Center for Research in Security Prices (CRSP), the NYSE’s Trade and

Quotes (TAQ), and a proprietary NYSE dataset to construct the end-of-day midquote price (i.e.,

the average of the bid price and ask price) and NYSE specialist inventory position along with other

variables from 1994 through 2005. We construct a balanced panel to make results comparable

through time and control for stock fixed effects. We start with the sample of all NYSE common

stocks that can be matched across TAQ and CRSP and retain the stocks that are present throughout

the whole sample period. Stocks with an average share price of less than $5 are removed from the

sample, as are stocks with an average share price of more than $1,000. The resulting sample

comprises 697 common stocks. Stocks are sorted into quintiles based on market capitalization.

Quintile 1 refers to the large-cap stocks and quintile 5 corresponds to the small-cap stocks. To

facilitate comparisons across stocks we convert the NYSE specialist position, which is in shares

in the original database, into dollars by multiplying the position times each stock’s average price
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each year.6 This eliminates daily price changes in the inventory variable allowing its use as an

explanatory variable for the transitory price effect in the econometric model. Throughout we use

specialist, market maker, and intermediary interchangeably to refer to the NYSE specialist.

[insert Table 1]

Summary statistics. Table 1 presents the mean of various trading variables by size quintile.

To provide a sense of the variable’s variability through time the within variation, which is defined

as the standard deviation of the data series after removing stock fixed effects, is also included.

Several observations emerge from the statistics. First, the within standard deviation in intermediary

inventory is $1.4 million, which is substantial relative to her average position. It suggests that the

specialist is an active intermediary in matching buyers and sellers at interday horizons. Table 2

subsequently disaggregates this variation by year and by size quintile. Second, while not the focus

of this study, the average position of the intermediary is positive and economically significant.7

For example, for the large-cap stocks in Q1 she maintains an almost half a million dollar average

inventory position. The inventory position for the small-cap stocks in Q5 is considerably smaller at

$77,900. Third, the market capitalization is $34 billion for Q1 stocks and declines to $290 million

for Q5 stocks. The effective spread (more precisely referred to the half spread, but for notational

convenience we use spread throughout), which is defined as the distance between the transaction

price and the prevailing midquote price, is 8 basis points for Q1 stocks and 46 basis points for Q5

stocks, demonstrating considerable heterogeneity across stocks.

1.2 State space model to disentangle price pressures and efficient price innova-

tions

One challenge in identifying price pressures is that investors’ net order imbalance, the difference

between the volume investors buy and sell (which equals the intermediary’s inventory change),

may convey information as well as cause pressure which makes prices ‘overshoot’. This well-known

pattern has been documented in various event studies. For example, Kraus and Stoll (1972) show

6We use the stock-split and dividend information from CRSP to remove these effects from the midquote prices in
TAQ.

7This average long position is likely driven by a combination of a cost asymmetry between long and short position
and capital requirements imposed by the exchange which intermediaries choose invest in stocks. The model in
Section 2 interprets the zero position as the deviation from the long-term optimal position of the intermediary.
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that prices overshoot in the event of a block trade, i.e., a transaction where the initiating party

wants to trade an significant number of shares, typically defined as greater than 10,000. They

document the following pattern for block sales where E3 is the immediate total impact of the block

sale, E3 − E2 is the permanent impact, and E2 is the temporary impact (price pressure) from the

sale:

source: Kraus and Stoll (1972, p.575)

To identify the price pressure effect in the presence of an information effect, we use the state space

approach of Menkveld, Koopman, and Lucas (2007) which models an observed, high-frequency price

series as the sum of two unobserved series: a nonstationary efficient price series (‘information’) and

a stationary series that captures transitory price effects (‘price pressures’). We use log prices

throughout the paper and remove a required return by subtracting a linear trend with a slope

equal to the riskfree rate plus beta times a market risk premium of 6%. In its simplest form the

model structure for the detrended log price is:

pt = mt + st, (1)

mt = mt−1 + wt, (2)

where pt is the observed price, mt is the unobserved efficient price, st is the unobserved transitory

price effect, and wt is the innovation in the efficient price. st and wt are mutually uncorrelated

and normally distributed. It is immediate from the structure of the model that only draws on wt

affect the security’s price permanently as any draw on st is temporary as it affects prices only at a

single point in time. The model can be estimated with maximum likelihood where the likelihood
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is calculated by the Kalman filter. Details on the implementation are in Appendix I.

There are several reasons why the state space methodology is preferable to other approaches

such as generalized method of moments (GMM) or an autoregressive moving average (ARIMA)

model. First, maximum likelihood estimation is asymptotically unbiased and efficient. Second,

the model implies that the differenced series is an invertible first-order moving average (MA(1))

time series model which implies a infinite lag autoregressive (AR) model. This is particularly

cumbersome if the price series (or the inventory series that we will use as explanatory variable for

st) have missing values. The Kalman filter ensures maximum efficiency in dealing with missing

values by not losing any information as it considers the likelihood of all level series changes even

if they extend over multiple periods in the case of missing observations. Any method based on the

differenced series does not consider that information. Third, after estimation, the Kalman smoother

(essentially a backward recursion after a forward recursion with the Kalman filter) facilitates a

series decomposition where at any point in time the efficient price and the transitory deviation are

estimated using past and future prices. This allows for an in-sample decomposition of prices which

we will illustrate. Durbin and Koopman (2001) provide an extensive treatment on the use of state

space models to analyze economic times series.

The remainder of this subsection develops the general state space model to be taken to the

data. We first develop the latent efficient price process and then the stationary price deviations

that should capture the price pressures that are our focus.

Unobserved efficient price process. We use the model to analyze daily midquote price

series by stock-year. The efficient price series is a martingale that consists of two components:

mit = mi,t−1 + βif̂t + wit, wit = κiÎit + uit (3)

where the subscript i indexes stocks, t indexes days, f̂t is a common factor innovation that is

obtained as the residual of an autoregressive time series model applied to the market cap weighted

average of standardized midquote returns (we standardize to control for heteroscedasticity), wit is

the idiosyncratic innovation, Îit is the idiosyncratic inventory innovation (similar procedures are

used as described for f̂t) that represents the ‘surprise’ net order imbalance which is potentially

informative, and uit is the stock-specific innovation orthogonal to this order imbalance innovation

7



and assumed to be a normally distributed white noise process.8 The decomposition of efficient

price innovation into a common factor component (βif̂t) and an idiosyncratic component (wit) is

relevant for our purposes as the latter represents undiversifiable risk for the intermediary. The

common factor risk is easily hedged through highly liquid index products. For the same reason we

remove the common factor from inventory dynamics as the price risk over a market-wide shock to

inventory is similarly easily hedged through index products.

Unobserved transitory price deviations process. We propose the following process for

the stationary price deviations:

sit = αiIit + β0
i f̂t + · · ·+ βk

i f̂t−k + εit (4)

where the error term εit is normally distributed and uncorrelated with wit. Inventory enters as

an explanatory factor to allow price pressure to originate from the intermediary’s desire to mean

revert inventory (Section 2 provides a simple dynamic model generating such a linear structure).

The f terms enter to capture a documented lagged adjustment to common factor innovation that is

particularly prevalent for less actively traded small-stocks (see, e.g., Campbell, Lo, and MacKinlay

(1997)). In the proposed specification the beta coefficient in the efficient price process captures the

long-term impact of a common factor shock on the price of the security and any lagged adjustment

shows up through negative beta coefficients in the transitory price effects equation.

Observed price process. We close the econometric model with the observation equation:

pit = mit + sit. (5)

As we intend to analyze price pressures in the cross-section as well as in the time dimension

all empirical analysis are done by stock-year. To report the 697*12 stock-year results we aggre-

gate stocks into quintile bins according to their size. The allocation across size quintiles is fixed

throughout the sample so as to ensure that bins are comparable across years. Means are calculated

for each bin along with the number of t-statistics that are outside of the 0.10 to 0.90 quantile

interval. These t-statistics are available as supplementary material on the authors’ websites. The

8While not the focus of the paper, it is worth noting that the idiosyncratic inventory innovation term in the
martingale equation eliminates a potential ‘omitted variable bias’ as the explanatory variable for the efficient price
innovation (wt) correlates with the explanatory variable for price pressure (st), i.e., the order imbalance innovation
(unexpected change in inventory) in period t correlates with inventory at time t (which is at the end of period t).
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tables report the p-value of a meta test statistic that counts the number of significant t-values in

a size-year bin (and in the aggregation across bins). This statistic is binomially distributed where

the probability of ‘success’ equals the significance level of the t-test performed for each stock-year

estimation, i.e., 0.20 in our two-tailed test.9

Time series statistics as preliminary evidence on price pressures. Before turning

to the state space model estimates, some straightforward time series statistics are useful to test

whether the signs of the price effects that we are after are present in the data.

[insert Table 2]

Panels A and B of Table 2 reports first and second order autocorrelation of idiosyncratic midquote

returns. The effects of contemporaneous and lagged adjustment to the common factor innovation

are removed by regressing the midquote return on the common factor innovation up to four lags.

The residuals serve as the idiosyncratic returns. Consistent with the individual stocks autocor-

relation results in Campbell, Lo, and MacKinlay (1997) the average first order autocorrelation is

negative in 64 of the 70 size-year bins. The low p-values indicate that the coefficient estimates are

significant at conventional significance levels.10 The negative first order autocorrelation is consis-

tent with transitory price effects as the simple state space model of equations (1) and (2) implies a

negative first-order correlation in midquote returns. The table further shows that the second order

autocorrelation is also significantly negative which indicates that price pressures may carry over

days rather than being an ultra-high-frequency intraday phenomenon. This also implies that the

unconditional transitory deviations are potentially much larger relative to fundamental volatility

than the simple first-order autocorrelations suggest.11

Panels C, D, and E of Table 2 further reports the standard deviation of intermediary inventory,

its autocorrelation, and a cross-correlation with subsequent midquote returns as preliminary evi-

dence on the conjectured relation between transitory price deviations and inventory. The standard

9Correlation across stocks is limited by the empirical analysis’ focus on idiosyncratic effects by removing a common
factor in both the price and in the inventory series.

10Overall, 3525 t-values are significant and 4836 t-values are insignificant. The sign of the significant t-values is
primarily negative (2427 negative vs. 1098 positive) which shows that the negative means are statistically significant.
We omit extensive statistical significance discussion in the remainder of the document for brevity.

11If the stationary term follows an AR(1) process, st = ϕst−1 + εt, the first-order autocorrelation in midquote
returns is:

ρ1 =
−(1− ϕ)σ2

ε

(1 + ϕ)σ2
w + 2σ2

ε

where ϕ is the autoregressive coefficient in the st process. The more persistent the price pressure, higher ϕ, the less
negative the return autocorrelation becomes.
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deviation of intermediary end-of-day inventory is $1.131 million for the large-cap stocks and mono-

tonically decreases to $165,000 for the small-cap stocks. It is relatively constant throughout time

but tapers off in the last few years in the sample. The cross-sectional variation is undoubtedly due

to a higher fundamental volatility and a smaller less active market for small-cap stocks. In this

case, the intermediary will shy away from frequent and large nonzero inventory positions, e.g., see

the model proposed in Section 2.

The inventory volatility is roughly twice the mean inventory across all quintiles. This is evi-

dence of active intermediation across days as inventory management is not a phenomenon that is

restricted to the intraday ultra-high frequency level where intermediaries ‘go home flat.’ The table

further documents a significant first order autocorrelation in inventories which show that these

positions can last for multiple days. Again, there is considerable cross-sectional variation as the

average autocorrelation for the large-cap stocks is 0.28 which monotonically increases to an average

autocorrelation of 0.72 for small-cap stocks, corresponding to inventory half-lives of 0.55 days for

the largest stocks and 2.11 days for the smallest stocks.12 The intermediary seems to trade out of

most of an end-of-day position in the course of the next day for the large-cap stocks, whereas it

take multiple days for the small-cap stocks. Finally, we calculate the correlation between today’s

inventory position and tomorrow’s midquote return to verify whether the two sets of results in

the table can be reconciled. The last panel in the table shows that today’s inventory position

correlates significantly with tomorrow’s midquote return. The positive signs are consistent with

models of intermediary risk management as the intermediary applies price pressure by lowering the

midquote price on a long position (relative to the long-term average) which elicits an order imbal-

ance (more investor buying than selling) that mean reverts her inventory and, as a consequence,

leads to smaller price pressure. This creates a positive correlation between today’s position and

tomorrow’s midquote return.

State space model estimates. Before presenting the general state space model defined by

equations (3), (4), and (5), we illustrate the idea of the model graphically. The equations relate the

permanent price change Δmt and transitory price effect st to the intermediary’s inventory series.

12These inventory autocorrelations are lower than the puzzlingly large autocorrelations found in NYSE data from
the late 1980s and early 1990s in Madhavan and Smidt (1993) and Hasbrouck and Sofianos (1993).
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Initially, we do not use inventory data to estimate the reduced version of the model:

pit = mit + sit (6)

mit = mi,t−1 + βif̂t + wit (7)

sit = ϕisi,t−1 + β0
i f̂t + · · ·+ β3

i f̂t−3 + εit (8)

where the AR(1) process for sit allows transitory price effects to be persistent as suggested by the

negative second order auto correlations in returns (Panel B of Table 2) and the inventory persistence

(Panel D of Table 2). Model estimates by stock-year are in the supplementary material.

[insert Figure 1]

Figure 1 illustrates the model estimates for twenty trading days in a representative stock (Rex

Stores Corporation, ticker RSC, CRSP PERMNO 68830) starting January 14, 2002. It exploits

one attractive feature of the state space approach, which is that conditional on the model’s param-

eter estimates the Kalman smoother generates estimates of the unobserved efficient price and the

transitory price pressure processes conditional on all observations. In other words, it uses past and

future prices to estimate the efficient price mit and the temporary price deviation sit at any time t

in the sample. The first graph plots the observed midquote price and the efficient price estimate.

It illustrates that price deviations from fundamental value are economically large—hundreds of

basis points—and persistent as they appear to last for multiple days. The second graph plots the

differential between the observed price and the efficient price estimate, i.e., the price pressure, along

with the intermediary’s inventory deviation from its long-term mean. The clear negative correlation

between the two series is consistent with the intermediary using price pressure to mean-revert her

inventory towards its desired level. The third graph plots the innovation in efficient price Δmt

against the contemporaneous ‘surprise’ idiosyncratic inventory change which is obtained as the

residual of an AR(9) model. It indicates that unexpected order flow is informative on the efficient

price. A surprise positive inventory change indicates unexpected selling by liquidity demanders

which changes the efficient price downwards as the selling might have been driven by information.

These observations are now tested rigorously by estimating the state space model with inventory

data.

[insert Table 3]
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Table 3 reports the estimates of the general state space model defined by equations (3), (4),

and (5). In Panel A the key parameter αi that measures the conditional price pressure has the

conjectured negative sign and is statistically significant as 4045 t-values are significantly negative,

4051 are insignificant, and only 265 are significantly positive. Prices are low when the intermediary

is on a long position and high when she is on a short position relative to her long-term mean

inventory. Conditional price pressure exhibits substantial cross-sectional variation as αi is -0.02 for

the large-cap stocks and -1.01 for the small-cap stocks. These numbers are economically significant

as a $1.131 million (one standard deviation) position change in intermediary inventory creates a

price pressure of 1131*0.02=17 basis points (cf. effective half-spread of 8 basis points, see Table 1).

A similar position change in the small-cap stocks would create a price pressure of 1131*1.01=1142

basis points or 11.42%!

Panel B of Table 3 further shows that the average price pressure varies less in the cross-section

than the conditional price pressure. The average pressure which is measured as the conditional

pressure times the standard deviation of inventory is 17 basis points for the large-cap stocks and

120 basis points for the low-cap stocks. The conditional pressure is roughly 7 times higher for the

small-cap stocks relative to the large-cap stocks whereas the conditional pressure is 50 times higher

with the difference attributable to the intermediary taking smaller positions in the smaller stocks.

Panel F also reports the size of these average price pressures relative to permanent volatility. The

variance ratio is 0.02 for the large-cap stocks which indicates that these price pressures are small

relative to fundamental volatility. In contrast the small-cap stock variance ratio is 1.32, implying

transitory volatility due to price pressures is larger than fundamental volatility. Finally, the average

price pressure variance identified using inventories is almost half of the transitory price deviations

variance in the model that does not use inventory data (equations (6)-(8), see supplementary

material for estimation details). The ratio is (49/75)2 = 0.42 which could be interpreted as an ‘R2’.

Consistent with earlier empirical work (for example, Hasbrouck (1991)), unexpected inventory

changes, which equal unexpected investor buying or selling, explain a significant part of efficient

price innovations. The κi estimates in Panel C are -0.35 on average and highly significant as 6602

t-values are significantly negative, 1631 are insignificant, and only 128 are significantly positive. In

Panel D the average explained permanent volatility—κi times the standard deviation of unexpected

inventory changes—is 56 basis points. This compares to an average total permanent volatility of
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177 basis points in Panel E.

2 A simple dynamic inventory control model to interpret the time

series properties of price pressure

This section models the intermediary’s dynamic inventory control policy as a ‘stochastic optimal

linear regulator’ (SOLR) problem (see Ljungqvist and Sargent (2004, p.112)). A representative

intermediary faces stochastically arriving investors with elastic liquidity demands. The solution

characterizes a stationary distribution for price pressures which along with the empirical results in

the previous section, enables identification of the intermediary’s relative risk aversion and liquidity

demanders’ private value distribution. It also allows for an analysis of the costs of trading and

social welfare. Given that the model assumes investors arrive asynchronously, first-best is not

achievable, so our social welfare analysis focuses on deviations from constrained Pareto efficiency;

for expositional ease we will often omit constrained when discussing Pareto efficiency.

To fit the SOLR approach we assume that: (i) liquidity demand which determines the interme-

diary’s buy and sell volume is exogenous and normally distributed with a mean that is linear in the

bid and ask price, respectively, (ii) the intermediary is a mean-variance optimizer over nonstorable

consumption,13 and (iii) a security position exposes the intermediary to fundamental value risk

which is modeled as a normally distributed stochastic dividend to avoid a notational burden.14

The fundamental value of the security, mt in the empirical model, is set to zero.

The model is inspired by Ho and Stoll (1981) who frame dynamic inventory control in a standard

macro model of a CRRA utility intermediary who controls the public buy and sell rate which are

linear in her ask and bid price quotes. The intermediary solves a dynamic program to maximize

terminal wealth. We deviate by setting up the problem as an infinite horizon one so as to generate

a stationary distribution for price pressure that can be compared to the empirical estimates.

13Cochrane (2001, p.155) also considers quadratic utility a natural starting point when he introduces dynamic
programming. Madhavan and Smidt (1993) model inventory as having quadratic holding costs. Lagos, Rocheteau,
and Weill (2009) model liquidity provision where intermediaries maximize over nonstorable consumption.

14The stochastic dividend minimizes accounting in the model, but, as Ho and Stoll (1981, p.52) emphasize, no
sources of uncertainty are ignored. These assumptions have several implications. First, the nonstorable consumption
removes the ability of the intermediary to precautionary save and smooth consumption. Second, quadratic utility
leads to risk aversion that increases with wealth. Third, the normality assumption for public buy and sell volume
implies that they could become negative. To show that the model’s predicted price pressure dynamics is robust, we
also numerically solve an infinite horizon ‘Ho and Stoll’ model in the supplementary material.
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2.1 The environment

Time is discrete and infinite. There is one durable asset that produces a perishable and stochastic

(numéraire) consumption good. An infinitely-lived intermediary supplies liquidity by standing

ready to buy or sell the asset to outside investors who demand liquidity. At the start of each period

a single intermediary quotes an ask price at which she commits to sell and a bid price at which she

commits to buy.

Reduced form liquidity demand. Liquidity demand is characterized by the primitive

parameters λ, which is the aggregate amount of all investors’ private values to trade per unit

of time, and θ, which captures the dispersion of private values across investors. Investor buying

and selling are determined by the intermediary’s bid price, s − δ, and ask price, s + δ, which

are characterized by price pressure s, which is pt − mt in the state space model, and the bid-ask

spread of 2δ. Specifically, investor buying and selling demand for liquidity are normally distributed

variables linear in the bid-ask quotes:15

qs(s, δ) = λθ
(
1− θ(s+ δ)

)
+ εs, εs ∼ N

(
0,

1

2
σ2
ε

)
, (9)

qb(s, δ) = λθ
(
1 + θ(s− δ)

)
+ εb, εb ∼ N

(
0,

1

2
σ2
ε

)
, (10)

where εs and εb are independent of each other and identically and independently distributed (IID)

each period. The environment is best illustrated by the two graphs below where graph (i) illus-

trates liquidity demand ‘distribution’ over private values and graph (ii) depicts how such demand

translates into an expected investor buy rate, which equals the intermediary sell rate, that is linear

in the ask price.

The intermediary’s liquidity supply. The intermediary is risk-averse and therefore dislikes

the risky dividend associated with a nonzero inventory position. She solves the following infinite-

15These distributions can arise from an economy where each time period each of a finite number N of investors
each owning 1

N
units of the asset receives a shock to their private value to trade with probability 2λθ. Common

interpretations of such shocks are that investors have hedging or liquidity needs from which they derive private values
(Grossman and Miller (1988)). Private value shocks are uniformly distributed on support [− 1

θ
, 1
θ
]. If the intermediary

quotes an ask price of (s+δ) investors’ sell volume is distributed 1
N

times a binomial random variable with parameters
(N,λθ(1− θ(s+ δ))). The binomial distribution for intermediary sell volume can then be approximated by a normal
distribution with the same mean but with variance equal to 1

2
σ2
ε . Buy volume is similarly distributed.
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transaction rate
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(i) mean demand per private value (ii) mean public buy volume as function of ask price

horizon dynamic program:

vi0 = max
{st(it),δt(it)}∞t=0

∞∑
t=0

Ei0

(
βt((ct − 1

2
λ)− 1

2
γ̃(ct − 1

2
λ)2)

)
(11)

where it represents the history of her inventory position through time t and Ei0(.) is the expectation

operator conditional on starting off with inventory position i0. The quadratic utility parametriza-

tion is such that the Arrow-Pratt coefficient of (absolute) risk aversion (ARA) is γ̃ at 1
2λ which is

the expected consumption of a monopolistic risk-neutral intermediary. The intermediary’s actual

consumption in period t equals net trading revenue plus the stochastic dividend:

ct = (st + δt)qs(st, δt)− (st − δt)qb(st, δt) + itΔmt+1, (12)

= 2λθ(δt − θ(s2t + δ2t )) + s(εst − εbt) + δ(εst + εbt) + itΔmt+1, Δmt+1 ∼ N(0, σ2)

where Δmt+1 is the stochastic dividend at the start of period t + 1 (which runs from t to t + 1).

Consumption mean and variance therefore equal:

E(ct) = 2λθ(δt − θ(s2t + δ2t )) (13)

var(ct) = σ2
ε(s

2
t + δ2t ) + σ2i2t (14)

The law of motion for inventory follows from the net trade in the asset:

it+1 = it − qs(st, δt) + qb(st, δt) = it + 2λθ2st − εst + εbt (15)

A final step simplifies the problem in two ways. First, the expected utility expression is linearized
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in mean and variance by a first-order Taylor expansion around the average risk-neutral consumption

1
2λ. This removes the quadratic conditional mean which would make the objective function fourth

order and therefore impossible to solve with standard techniques. Second, we omit the impact of σ2
ε

in the variance of consumption, equation (14), to focus on how prices reflect the dynamic trade-off

between the intermediary’s expected cost of a pressured price and its benefit of mean-reverting

risky inventory. Omission of the consumption variance effect is innocuous if the pain of liquidity

demand uncertainty (as captured by 1
2 γ̃σ

2
ε) is small relative to the expected revenue loss due to

price pressure (as captured by 2λθ2). The final specification of the dynamic program is therefore:

vi0 = max
{st(it),δt(it)}∞t=0

∞∑
t=0

βtEi0

(
2λθδt − 2λθ2(s2t + δ2t ))−

1

2
γ̃σ2i2t

)
(16)

it+1 = it + 2λθ2st + εt, εt ∼ N(0, σ2
ε). (17)

2.2 The recursive form, the closed-form solution, and its characteristics

The IID character of net liquidity demand uncertainty (εt) and stochastic dividend (Δmt+1) allows

for a recursive formulation of the dynamic program. The intermediary solves the following Bellman

equation:

vi = max
{p,δ}

Ei0

(
2λθδ − 2λθ2(s2 + δ2)− 1

2
γ̃σ2i2 + βvi′

)
(18)

i′ = i+ 2λθ2s+ ε. (19)

Standard solution techniques yield the following solution:

vi =
λ

2(1− β)
− P (i2 +

β

1− β
σ2
ε) (20)

s∗ = αi, α ≡ −1
1
βP +Q

(21)

δ∗ =
1

2θ
(22)

where (s∗, δ∗) denote the optimal prices controls and

P ≡ −(1− β) + βRQ+
√

(1− β)2 + 2β(1 + β)QR+ β2Q2R2

2βQ
, Q ≡ 2λθ2, R ≡ 1

2
γ̃σ2. (23)
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Time series properties of price pressure. The solution to the intermediary’s control

problem implies linear dynamics for price pressure (s) and inventory which matches the econometric

model that was taken to the data. More specifically, price pressure is linear in inventory (equation

(21)) and inventory is characterized by first-order autoregressive process:

it =
βPQ

1 + βPQ
it−1 + εt = −Qαit−1 + εt. (24)

Orthogonality of the spread and optimal inventory control. The intermediary’s

pricing strategy decomposes into two orthogonal strategies. First, she sets a spread that exploits

her monopolistic pricing power vis-à-vis the investors. Second, she uses price pressure (the midquote

price) to optimally mean-revert her inventory. Mathematically, the control strategy orthogonalizes

as the spread does not enter the speed of mean-reversion and the spread is constant across inventory

states.16 This critically depends on the assumption that public buy and sell volume are linear in

prices (see equation (9) and (10)).

The orthogonality result implies (i) that price pressure, not spread, should be the focus of a study

on dynamic inventory control by an agent who intermediates nonsynchronous buy and sell volume

and (ii) that a competitive equilibrium can be characterized. If the ‘representative’ intermediary

becomes a price-taker and entry drives rents to zero, then the candidate pricing function is equal to

the price pressure exercised by the monopolistic intermediary with a spread exactly compensating

for the cost of the stochastic dividend on nonzero inventory positions. From this we can calculate

the model-implied competitive spread and compare it with the observed spread.

2.3 Identification of the model’s primitive parameters

The remainder of the section uses the state space model estimates to identify the model’s primitive

parameters, calculates an model-implied competitive spread and finally, in the next subsection,

analyzes Pareto efficiency.

[insert Table 4]

Table 4 summarizes all results with a repeat of the empirical results in Table 3 needed for

identification of the model’s primitive parameters. To separately identify the λ and θ parameters,

16Zabel (1981) and Mildenstein and Schleef (1983) find the spread is independent of inventory. Ho and Stoll (1981)
find inventory has a very small effect on the spread.
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which characterize investors’ demand for liquidity, trading volume and spread are needed. See

Appendix II for detailed calculations. The only additional parameter needed is discount factor (β)

which is assumed to be equal to the risk-free rate.

Competitive spread required to compensate for inventory risk. Equation (20) shows

that the value of being a liquidity supplier naturally decomposes into a discounted expected revenue

due to earning the bid-ask spread (first term) and a discounted cost due to price risk associated

with nonzero inventory (second term). The annuity value of the inventory risk compensation equals

βPσ2
ε if the intermediary starts with zero inventory (which is assumed for the remainder of the

section). The model-implied conditional price pressure and inventory mean-reversion as described

by equations (21) and (24) identify the factor βPQ. The remaining factor σ2
ε follows directly

from inventory variance and mean-reversion, i.e., σ2
ε = (1 − ρI)σ

2(I), where ρI is the first-order

autocorrelation of inventory. This daily value divided by the intermediated daily volume naturally

defines the ‘competitive spread’.

Panel B of Table 4 reveals that the median model-implied competitive spread is 7.32 basis

points for the largest-cap stocks and monotonically increases to 73.16 basis points for the smallest-

cap stocks.17 These results do not use actually observed spread, but are identified solely from

conditional price pressure and inventory dynamics. It is reassuring that the model-implied spread

is of the same magnitude as the observed spread. It is slightly below for largest-cap stocks (7.32

vs. 8.41 basis points) and increases to a roughly 50% higher for the smallest-cap stocks (73.16 vs.

46.12 basis points). The differential is potentially due to a specialist privilege during the sample

period where she could see the incoming order flow and limit her trading with privately-informed

order flow (see, e.g., Rock (1990)). This privilege is particularly valuable for small-caps which are

relatively more opaque. The observed spread is net of the value of such privilege (given that access

to specialist seats is competitive) and, therefore, can be lower than the competitive spread.

The model’s primitive parameters. All primitive parameters are identified if in addition

to the terms identified in the previous section (βP , Q, and σ2
ε), one uses the reciprocal of the

gross riskfree rate (from Kenneth French’s website) for the discount factor β, uses the empirical

random-walk volatility (σ(w)) for the fundamental price risk (σ), and uses the observed empirical

17For the remainder of the section medians and interquartile ranges (Q0.75 − Q0.25) are reported as the model-
implied variables are nonlinear functions of the empirical estimates (with estimates in denominators) which creates
numerical problems. Medians and interquartile ranges are robust to these issues.

18



results on intermediated daily volume (specialist particip ∗ daily volume) and the effective spread

(espread).18 Appendix II summarizes all variables identified in this section and expresses them

in terms of the previous section’s empirical estimates. The private value rate λ is highest for

the largest-cap stocks: $56,690 per stock per day. It decreases monotonically to $1,460 for the

smallest-cap stocks. Private value dispersion 1
θ is 171 basis points for largest-cap stocks, 135 for

second largest-cap stocks and then increase monotonically to 307 basis points for smallest-cap

stocks.

We calculate the coefficient of relative risk aversion (γ) by dividing γ̃ by the intermediaries

expected consumption at the competitive spread. The median relative risk aversion declines mono-

tonically from 0.24 for the largest-cap stocks to 0.05 for the smallest-cap stocks with the differences

across quintiles small relative to the interquartile ranges within each quintile. The overall median

of 0.10 is low relative to relative risk aversion estimated from asset, insurance, and labor markets

(e.g., Mehra and Prescott (1985), Barsky, Juster, Kimball, and Shapiro (1997), Chetty (2006), and

Cohen and Einav (2007)). The low risk aversion could arise from risk tolerant capital migrating to

the intermediation sector or be a sign of an agency conflict between firm and the individual traders

it employs to act as intermediaries. If the traders have limited liability, then they may be willing

to take more risky bets than the firm’s owners would prefer. It is also possible that our structural

model underestimates true risk aversion as the model ignores increased net demand uncertainty

associated with price pressure (see related discussion in Section 2.1).

2.4 Deadweight loss due to Pareto inefficiency

The intermediary trades off the expected cost of price pressure against the benefit of inventory mean-

reversion. The left-hand side graph in the figure below depicts the expected cost of a negative price

pressure s (due to a positive inventory). The ask price is lowered and the light gray area above the

horizontal axis indicates the additional expected revenue due to more public buying. The lowered

price also reduces the margin on all buys which is indicated by an expected loss equal to the dark

gray area above the axis. Similar areas are drawn for the lowered bid price. Overall, the differential

between the light and dark gray areas is the expected revenue decline due to price pressure. The

size of this area equals the 2λθ2s2 cost in the intermediary’s Bellman equation (see equation (18)).

18The identification of λ and θ relies primarily on trading volume and is relatively insensitive to the spread.
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The right-hand side graph shows that the liquidity demanders benefit as the discount they

enjoy when buying exceeds the lower price they receive when selling. The difference equals half the

intermediary’s cost of price pressure: λθ2s2. The daily annuity value of the net subsidy is obtained

recursively (see Appendix III) and, when divided by daily intermediated volume, equals 0.58 basis

points for the largest-cap stocks (8% of their competitive spread) and 15.52 basis points for the

smallest-cap stocks (21% of their competitive spread).

δ
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transaction rate

−1
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1
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λθ public buy rate

public sell rate+

+

−

−
λθ2s
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−1
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1
θ

λθ public buy rate

public sell rate

−

+

λθ2s

s

s

-δ

(i) intermediary’s cost of price pressure (ii) liq. demander benefit of price pressure

The intermediary only experiences the cost of lost revenue due to price pressure and does not

internalize the benefit it creates for liquidity demanders which, most likely, makes allocations Pareto

inefficient.19 The adjective ‘constrained’ is used here to emphasize that the first-best of synchronous

arrivals eliminating the need for intermediation is not attained. A social planner might Pareto

improve by making the intermediary suffer the net surplus destroyed by price pressure rather than

her private revenue loss (i.e., the sum of graphs (i) and (ii) rather than graph (i)). This true social

cost is λθ2s2 as depicted in the following graph. Solving the ‘social planner dynamic program’

price

-δ

transaction rate

−1
θ

1
θ

λθ public buy rate

public sell rate+

−

δs

s

λθ2s

social cost of price pressure

19See Weill (2007) and Lagos, Rocheteau, and Weill (2009) for models with conditions where the intermediation
sector does and does not achieve Pareto efficient.
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yields a solution similar to the intermediary’s solution where P in equation (23) is replaced by P̃ :

P̃ =
−(1− β) + 2βRQ+

√
(1− β)2 + 4β(1 + β)QR+ 4β2Q2R2

4βQ
(25)

Panel C of Table 4 shows that the social planner’s implied ‘competitive spread’ is 6.45 basis points

for the largest-cap stocks and increases to 54.77 basis points for the smallest-cap stocks. The gain

relative to the net spread paid by the liquidity demander in the intermediary’s solution (i.e., net

of the subsidy) is 0.05 basis points (0.8% of the competitive spread) for Q1 stocks and 2.58 basis

points (4.5% of the competitive spread) for Q5 stocks.

3 Price pressure and NYSE market structure

When interpreting our results it is worth discussing the institutional structure of the specialist

intermediary at the NYSE. Historically, the NYSE granted the specialists a central position in

the trading process and imposed obligations upon the specialists. Panayides (2007) shows that

the most significant obligation, the Price Continuity Rule which ‘requires the specialist to smooth

transaction prices by providing extra liquidity as necessary to keep transaction price changes small,’

is important at the transaction-level horizon. Panayides finds that the rule causes specialists to

accumulate inventory to prevent ‘transaction prices from overshooting beyond their equilibrium

levels’. This causes inventories to be positively associated with transitory price effects, the opposite

of our relation between intermediary inventory and price pressure. Therefore, if the Price Continuity

Rule manifests itself at a daily frequency it causes underestimation of price pressures associated

with inventory.

While the NYSE designates a single intermediary for each stock, it is possible for other investors

to compete with the specialist by placing limit orders to supply liquidity. Such a possibility is

especially important given the NYSE’s recent market structure changes (after our sample period)

which resulted in a reduced role for the specialist (Hendershott and Moulton (2007)). Additional

liquidity suppliers could reduce the width of the bid-ask spread and could also reduce the social

costs of intermediaries bearing risk. The most efficient manner to share risk is for the inventory

to be immediately and equally shared across all liquidity suppliers, leading to perfectly correlated

positions. How would this affect our estimates of price pressure? First, the conditional price
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pressure per unit of inventory (α) should be adjusted by the specialist’s fraction of inventory, e.g.,

if the specialist carries one half of the total inventory then the conditional price pressure should

be multiplied by one half. The average price pressure (ασ(I))is unaffected by additional liquidity

suppliers because the standard deviation of inventory is adjusted by the reciprocal of the adjustment

to the conditional price pressure. The model-implied primitive parameters and the analysis of the

spread (as summarized in Panel B and C of Table 4) are robust to this bias except for the private

value rate λ which has to be adjusted by the reciprocal of the adjustment to the conditional price

pressure.

4 Conclusion

Empirically we use 12 years of NYSE intermediary data to estimate price pressure—the deviation

of prices from fundamental values due to the inventory risks born by an intermediary providing

liquidity to asynchronously arriving investors. We construct a theoretical model to understand and

characterize the effects of price pressure. The structure of the model allows for estimation of the

intermediary’ risk aversion and social costs of price pressure. We find:

1. A $100,000 inventory shock causes price pressure of 1.01% for the small-capitalization stocks

and 0.02% for the large-cap stocks.

2. The daily transitory volatility in stock returns due to price pressure (a measure of average

price pressure) is large: 1.20% and 0.17% for small and large stocks, respectively. For small

stocks the ratio of transitory volatility due to price pressure to the permanent (random-walk

or efficient price) volatility is greater than one.

3. The model together with the time series properties of price pressure identifies low risk aver-

sion for the intermediaries, a 0.10 coefficient of relative risk aversion, and deviations from

constrained Pareto efficiency of 0.35 basis points of the value traded.

The significant size of price pressure suggest that a goal of financial market regulation should

be to mitigate price pressure (see also SEC (2010)). One way to do this is by increasing capital for

intermediation as the greater the risk bearing capacity of the intermediaries the smaller the price

pressure. Another approach would be to lower costs for investors to monitor the market. This
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would lead to investor trading being more responsive to price pressures, reducing the duration of

price pressure by allowing intermediaries to mean-revert their inventories more quickly.

Appendix I: Details on the likelihood optimization

The likelihood of the state space model described by equations (3-5) is optimized in the three below steps to

minimize the probability of finding a local maximum. The optimization is implemented in Ox using standard

optimization routines. The Kalman filter routines are from ssfpack which is an add-on package in Ox (see

Koopman, Shephard, and Doornik (1999)).

1. An OLS regression of the log price series first difference on contemporaneous and lagged f̂t yields

starting values for βi and β0
i , . . . , β

k
i (see equations (3)-(4)). These β estimates are fixed at these

values until the final step.

2. The likelihood is calculated using the Kalman filter (see Durbin and Koopman (2001)) and optimized

numerically using the quasi-Newton method developed by Broyden, Fletcher, Goldfarb, and Shanno.

In the optimization all parameters are free except for the βs and (σ(ε), ϕ) which are fixed at values that

are picked from a nine by nine grid. ϕ ranges from 0 to 0.8 and σ(ε) ranges from 0 to a stock-specific

upper bound that is calculated assuming that 80% of a stock’s unconditional variance is price pressure.

The likelihoods are compared across all 9*9=81 optimizations and the (σ(ε), ϕ) value that yields the

highest likelihood is kept as starting value for the final optimization. The rationale for this step is

to prevent numerical instability of the quasi-Newton optimization. That is, if all parameters are free

on arbitrary starting values the optimization routine often runs off to a persistence parameter ϕ that

approaches one and a price pressure volatility that approaches the stock’s unconditional volatility, i.e.,

it starts to load the observed price series on two nonstationary series (i.e., the efficient price and the

price pressure) and becomes unstable.

The Kalman filter is initialized with a diffuse distribution for the unobserved efficient price m0 and

the unconditional price pressure distribution for s0, i.e., s0 ∼ N(0, σ2(ε)
1−ϕ2 ).

3. The likelihood is optimized where all parameters are free and starting values for (βi, β
0
i , . . . , β

k
i , σ(ε), ϕ)

are equal to those found in steps 1 and 2.

This procedure proves numerically stable as we have strong convergence in the likelihood optimization for

all of our stock-year samples, i.e., convergence both in (i) the likelihood elasticity w.r.t. the parameters and

(ii) the one-step change in parameter values (they both become arbitrarily small).
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Appendix II

This appendix identifies the primitive parameters as functions of the empirical results documented in Tables 1,

2, and 3. They are identified by matching the observed time series pattern of price pressure (‘αiIit’) of

Section 1 to the stationary distribution of price pressure (‘αi’) implied by the model’s closed-form solution

of Section 2. In addition, trading volume is needed to separate the λ and θ parameters which characterize

investors’ demand for liquidity. To do this we must incorporate the fact that not all investor trading

occurs via the intermediary. To correct for this we use the volume intermediated by the specialist, denote

ν in the equations below, which is the fraction of trading volume in which the specialist is a participant,

specialist particip, times the total trading volume, dollar volume. The effective (half-)spread is denoted δe.

The expressions for the model’s primitive parameters are:

λ =
(−α ∗ ν + δe ∗ (1− ρI))

2

2 ∗ (−α) ∗ (1− ρI)
(26)

where ρI denotes the first-order autoregressive coefficient for inventory,

1

θ
=

−α ∗ ν + δe ∗ (1− ρI)

1− ρI
(27)

γ =
2 ∗ ( 1β − ρI) ∗ α2 ∗ (1− ρ2I) ∗ σ2(I)

ρ2I ∗ σ2(w)
(28)

The analysis of the spread uses:

comp spread =
−α ∗ (1− ρ2I) ∗ σ2(I)

ρI ∗ ν (29)

subsidy =
−α ∗ β ∗ (1− ρI) ∗ (1− ρ2I) ∗ σ2(I)

2 ∗ (1− β ∗ ρ2I) ∗ ν
(30)

pareto eff spread =

−α ∗ (−(1− β) + 2βRQ+
√
(1− β)2 + 4 ∗ β ∗ (1 + β) ∗RQ+ 4 ∗ β2 ∗ (RQ)2) ∗ (1− ρ2I) ∗ σ2(I)

4 ∗ (1− ρI) ∗ ν (31)

where

RQ ≡ (
1

β ∗ ρI − 1) ∗ (1− ρI) (32)
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Appendix III: Value of price pressure discount enjoyed by liquidity

demander

Let wi be the expected value of the price pressure discount enjoyed by the liquidity demander when the

intermediary starts on an inventory of i. The Markovian law of motion for the intermediary’s inventory

position allows for Bellmanizing this value as follows:

wi = Ei[
1

2
Qs2 + βwi′ ] (33)

Assume wi = A+Bi2 and calculate wi from equation (33):

A+Bi2 = wi =
1

2
Qα2i2 + βEi[A+B(i+Qαi+ ε)2] =

(
βA+ βBσ2

ε

)
+
(1
2
Qα2 + βB(1 +Qα)2

)
i2 (34)

A and B are solved by matching the constant and the coefficient of i2 on both sides of the equation.
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Duffie, D., N. Gârleanu, and L. Pedersen (2005). Over-the-counter markets.

25



Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Models. Oxford:
Oxford University Press.

Evans, M. and R. Lyons (2002). Orderflow and exchange rate dynamics. Journal of Political
Economy 110, 170–180.

Gabaix, X., P. Gopikrishnan, V. Plerou, and H. Stanley (2006). Institutional investors and stock
market volatility. Quarterly Journal of Economics 121, 461–504.

Garman, M. B. (1976). Market microstructure. Journal of Financial Economics 3, 257–275.

Gavazza, A. (2009). The role of trading frictions in real asset markets. American Economic
Review (forthcoming).

Greenwood, R. (2005). Short- and long-term demand curves for stocks: Theory and evidence on
the dynamics of arbitrage. Journal of Financial Economics 75, 607–649.

Grossman, S. J. and M. H. Miller (1988). Liquidity and market structure. Journal of Finance 43,
617–633.

Harris, L. and E. Gurel (1986). Price and volume effects associated with changes in the s&p 500
list: New evidence for the existence of price pressures. Journal of Finance 41, 815–829.

Hasbrouck, J. (1991). The summary informativeness of stock trades: An econometric analysis.
Review of Financial Studies 4, 571–595.

Hasbrouck, J. and G. Sofianos (1993). The trades of market makers: An empirical analysis of
nyse specialists. Journal of Finance 48, 1565–1593.

Hendershott, T. and P. C. Moulton (2007). Speed and stock market quality: The nyses hybrid.
Manuscript, UC Berkeley.

Hendershott, T. and M. S. Seasholes (2007). Market maker inventories and stock prices. American
Economic Review 97, 210–214.

Ho, T. and H. R. Stoll (1981). Optimal dealer pricing under transaction cost and return uncer-
tainty. Journal of Financial Economics 9, 47–73.

Huggett, M. (1993). The risk-free rate in heterogeneous agent incomplete insurance economies.
Journal of Economic Dynamics and Control 17, 953–969.

Koopman, S., N. Shephard, and J. Doornik (1999). Statistical algorithms for models in state
space using ssfpack 2.2. Econometrics Journal 2, 113–166.

Kraus, A. and H. Stoll (1972). Price impacts of block trading on the new york stock exchange.
Journal of Finance 27, 569–588.

Lagos, R., G. Rocheteau, and P.-O. Weill (2009). Crashes and recoveries in illiquid markets.
Manuscript, UCLA.

Levine, R. and S. Zervos (1998). Stock markets, banks, and economic growth.American Economic
Review 88, 537–558.

Ljungqvist, L. and T. J. Sargent (2004). Recursive Macroeconomic Theory. Cambridge Mas-
sachusetts: The MIT Press.

Madhavan, A. and S. Smidt (1991). A bayesian model of intraday specialist pricing. Journal of
Financial Economics 30, 99–134.

26



Madhavan, A. and S. Smidt (1993). An analysis of changes in specialist inventories and quota-
tions. Journal of Finance 48, 1595–1628.

Mehra, R. and E. Prescott (1985). The equity premium: A puzzle. Journal of Monetary Eco-
nomics 15, 145–161.

Menkveld, A. J., S. J. Koopman, and A. Lucas (2007). Modelling round-the-clock price dis-
covery for cross-listed stocks using state space methods. Journal of Business & Economic
Statistics 25, 213–225.

Mildenstein, E. and H. Schleef (1983). The optimal pricing policy of a monopolistic market maker
in the equity market. Journal of Finance 38, 218–231.

Panayides, M. (2007). Affirmative obligations and market making with inventory. Journal of
Financial Economics 86, 513–542.

Pastor, L. and R. Stambaugh (2003). Liquidity risk and expected returns. Journal of Political
Economy 111(3), 642–685.

Rock, K. (1990). The specialist’s order book and price anomalies. Manuscript, Harvard Univer-
sity.

Rust, J. and J. Hall (2003). Middlemen versus market makers: A theory of competitive exchange.
Journal of Political Economy 111, 353–403.

SEC (2010). Concept Release on Equity Market Structure, Release No. 34-61358; File No. S7-
02-10.

Stoll, H. R. (1978). The supply of dealer services in securities markets. Journal of Finance 33,
1133–1151.

Townsend, R. M. (1978). Intermediation with costly bilateral exchange. Review of Economic
Studies 45, 417–425.

Weill, P.-O. (2007). Leaning against the wind. Review of Economic Studies 74, 1329–1354.

Zabel, E. (1981). Competitive price adjustment without market clearing. Econometrica 49, 1201–
1221.

27



T
a
b
le

1
:
S
u
m
m
a
ry

st
a
ti
st
ic
s

T
h
is

ta
b
le

p
re
se
n
ts

su
m
m
a
ry

st
a
ti
st
ic
s
o
n
th
e
d
a
ta
se
t,

w
h
ic
h
co
m
b
in
es

C
R
S
P
,
T
A
Q
,
a
n
d
a
p
ro
p
ri
et
a
ry

N
Y
S
E

d
a
ta
se
t.

It
is

a
b
a
la
n
ce
d
p
a
n
el

th
a
t
co
n
ta
in
s

d
a
il
y
o
b
se
rv
a
ti
o
n
s
o
n
6
9
7
N
Y
S
E
co
m
m
o
n
st
o
ck
s
fr
o
m

J
a
n
u
a
ry

1
9
9
4
th
ro
u
g
h
D
ec
em

b
er

2
0
0
5
.
S
to
ck
s
a
re

so
rt
ed

in
to

q
u
in
ti
le
s
b
a
se
d
o
n
m
a
rk
et

ca
p
it
a
li
za
ti
o
n
,

w
h
er
e
q
u
in
ti
le

1
co
n
ta
in
s
la
rg
e-
ca
p
st
o
ck
s.

va
ri
a
b
le

d
es
cr
ip
ti
o
n
(u
n
it
s)

so
u
rc
e

m
ea
n

Q
1

m
ea
n

Q
2

m
ea
n

Q
3

m
ea
n

Q
4

m
ea
n

Q
5

st
.

d
ev
.

w
i-

th
in

a

m
id
qu

ot
e i

t
cl
o
si
n
g
m
id
q
u
o
te
,
d
iv
/
sp
li
t
a
d
ju
st
ed

b
($
)

N
Y
S
E

5
3
.7
6

4
4
.5
2

3
6
.6
5

2
8
.5
8

1
9
.2
1

2
2
.2
0

in
v
en

t
sh

a
re
s i

t
sp

ec
ia
li
st

in
v
en
to
ry

a
t
th
e
cl
o
se

(1
,0
0
0
sh
a
re
s)

N
Y
S
E

8
.1
9

5
.5
5

4
.3
3

3
.2
3

5
.3
9

3
4
.1
9

in
v
en

t
d
ol
la
r i

t
sp

ec
ia
li
st

in
v
en
to
ry

a
t
th
e
cl
o
se

b
($
1
,0
0
0
)

N
Y
S
E
/
C
R
S
P

4
1
2
.6
5

1
6
8
.7
5

1
2
9
.4
8

7
5
.4
4

7
7
.9
0

1
,3
8
3
.4
3

sh
a
re
s
ou

ts
t i

t
sh
a
re
s
o
u
ts
ta
n
d
in
g
(m

il
li
o
n
)

C
R
S
P

7
2
9
.9
2

1
5
7
.7
4

7
0
.0
8

3
6
.2
6

1
8
.7
3

2
8
3
.7
5

m
a
rk

et
ca
p
it

sh
a
re
s
o
u
ts
ta
n
d
in
g
ti
m
es

p
ri
ce

($
b
il
li
o
n
)

C
R
S
P

3
4
.2
9

5
.3
4

2
.0
6

0
.8
8

0
.2
9

1
1
.5
7

es
p
re
a
d
it

sh
a
re
-v
o
lu
m
e-
w
ei
g
h
te
d
eff

ec
ti
v
e
h
a
lf
sp
re
a
d
(b
p
s)

T
A
Q

8
.4
1

1
2
.4
6

1
6
.5
0

2
4
.6
0

4
6
.1
2

2
4
.2
0

d
ol
la
r
v
ol
u
m
e i

t
av
er
a
g
e
d
a
il
y
v
o
lu
m
e
($
m
il
li
o
n
)

T
A
Q

8
8
.2
1

2
3
.4
4

1
0
.1
3

3
.6
3

0
.9
9

4
2
.3
1

sp
ec
ia
li
st

p
a
rt
ic
ip

it
sp

ec
ia
li
st

p
a
rt
ic
ip
a
ti
o
n
ra
te

(%
)

N
Y
S
E

1
2
.3
1

1
2
.7
3

1
4
.1
0

1
6
.5
8

2
0
.8
7

8
.3
0

#
o
b
se
rv
a
ti
o
n
s:

6
9
7
*
3
,0
1
8
(s
to
ck
*
d
ay

)
a
:
B
a
se
d
o
n
th
e
d
ev
ia
ti
o
n
s
fr
o
m

ti
m
e
m
ea
n
s,

i.
e.
,
x
∗ it
=

x
it
−

x
i
.

b
:
W
e
a
d
ju
st

a
ll
p
ri
ce

se
ri
es

to
a
cc
o
u
n
t
fo
r
st
o
ck

sp
li
ts

a
n
d
d
iv
id
en

d
s.

28



Table 2: Price and inventory mean reversion estimates by year and size quintile

This table estimates the dynamics of log prices and intermediary inventories as well as their interaction. A common
factor, f̂t which is the cross-sectional mean each day of the standardized series, is removed from both series. For
example, for each stock, each year we multiply specialist inventory in shares by the average price and then regress it
on f̂t. The residuals from this regression are the idiosyncratic component of specialist inventory in dollars, Iit. For
various dependent and independent variables we perform the following regressions by size quintile (Q1 contains the
largest stocks) and by year:

yit = αi + βixit + εit
The table reports p-values in brackets. These p-values are based on a test statistic that counts the number of
significant t-values across all stock-year estimates in the bin. The test statistic is binomially distributed under the
null (we use the 0.1 and 0.9 quantiles in the t-test).

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 all
Panel A: Autocorrelation 1st lag coef log price change (xit = yi,t−1)
Q1 −0.03

(0.000)
−0.03
(0.000)

−0.05
(0.000)

−0.08
(0.000)

−0.02
(0.000)

−0.00
(0.005)

−0.01
(0.003)

−0.01
(0.001)

−0.05
(0.000)

−0.00
(0.005)

0.00
(0.005)

−0.02
(0.026)

−0.03
(0.000)

Q2 −0.02
(0.000)

−0.02
(0.000)

−0.03
(0.000)

−0.07
(0.000)

−0.01
(0.000)

−0.02
(0.000)

−0.04
(0.000)

−0.00
(0.000)

−0.06
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.03
(0.000)

−0.03
(0.000)

Q3 −0.00
(0.000)

0.00
(0.000)

−0.02
(0.000)

−0.06
(0.000)

−0.01
(0.000)

−0.04
(0.000)

−0.06
(0.000)

−0.02
(0.000)

−0.06
(0.000)

−0.04
(0.000)

−0.03
(0.000)

−0.03
(0.001)

−0.03
(0.000)

Q4 −0.01
(0.000)

−0.02
(0.000)

−0.03
(0.000)

−0.05
(0.000)

−0.00
(0.000)

−0.03
(0.000)

−0.07
(0.000)

−0.04
(0.000)

−0.08
(0.000)

−0.06
(0.000)

−0.08
(0.000)

−0.04
(0.000)

−0.04
(0.000)

Q5 −0.05
(0.000)

−0.04
(0.000)

−0.02
(0.000)

0.00
(0.000)

0.04
(0.000)

0.01
(0.000)

−0.03
(0.000)

0.00
(0.000)

−0.02
(0.000)

−0.01
(0.000)

−0.04
(0.000)

−0.02
(0.000)

−0.02
(0.000)

all −0.02
(0.000)

−0.02
(0.000)

−0.03
(0.000)

−0.05
(0.000)

−0.00
(0.000)

−0.02
(0.000)

−0.04
(0.000)

−0.01
(0.000)

−0.05
(0.000)

−0.03
(0.000)

−0.03
(0.000)

−0.03
(0.000)

−0.03
(0.000)

Panel B: Autocorrelation 2nd lag coef log price change (xit = yi,t−2)
Q1 −0.03

(0.001)
−0.05
(0.000)

−0.04
(0.000)

−0.02
(0.094)

−0.03
(0.135)

−0.02
(0.001)

−0.06
(0.000)

−0.05
(0.000)

−0.01
(0.026)

−0.01
(0.249)

−0.02
(0.015)

−0.01
(0.135)

−0.03
(0.000)

Q2 −0.03
(0.001)

−0.03
(0.003)

−0.03
(0.009)

−0.01
(0.320)

−0.03
(0.001)

−0.01
(0.249)

−0.04
(0.001)

−0.02
(0.000)

−0.01
(0.015)

−0.02
(0.001)

−0.00
(0.009)

−0.02
(0.649)

−0.02
(0.000)

Q3 −0.02
(0.584)

−0.02
(0.070)

−0.02
(0.045)

−0.01
(0.664)

−0.01
(0.584)

−0.01
(0.029)

−0.04
(0.000)

−0.02
(0.017)

−0.00
(0.010)

−0.00
(0.029)

−0.01
(0.029)

−0.01
(0.001)

−0.02
(0.000)

Q4 −0.01
(0.001)

−0.02
(0.249)

−0.02
(0.041)

−0.03
(0.041)

−0.02
(0.320)

−0.00
(0.063)

−0.03
(0.009)

−0.02
(0.094)

0.00
(0.003)

−0.01
(0.003)

0.01
(0.003)

−0.00
(0.001)

−0.01
(0.000)

Q5 −0.01
(0.029)

−0.01
(0.000)

−0.01
(0.017)

−0.00
(0.017)

−0.00
(0.000)

0.00
(0.010)

−0.01
(0.500)

−0.00
(0.000)

−0.01
(0.017)

−0.01
(0.009)

0.00
(0.087)

0.00
(0.070)

−0.01
(0.000)

all −0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.01
(0.010)

−0.02
(0.000)

−0.01
(0.000)

−0.04
(0.000)

−0.02
(0.000)

−0.00
(0.000)

−0.01
(0.000)

−0.00
(0.000)

−0.01
(0.000)

−0.02
(0.000)

Panel C: Standard deviation of idiosyncratic component specialist inventory Iit
Q1 691

(0.000)
968

(0.000)
813

(0.000)
964

(0.000)
1126
(0.000)

1336
(0.000)

1344
(0.000)

1489
(0.000)

1472
(0.000)

1122
(0.000)

1119
(0.000)

1128
(0.000)

1131
(0.000)

Q2 472
(0.000)

510
(0.000)

488
(0.000)

524
(0.000)

530
(0.000)

695
(0.000)

819
(0.000)

647
(0.000)

448
(0.000)

391
(0.000)

441
(0.000)

400
(0.000)

530
(0.000)

Q3 374
(0.000)

429
(0.000)

383
(0.000)

372
(0.000)

430
(0.000)

452
(0.000)

668
(0.000)

437
(0.000)

293
(0.000)

242
(0.000)

266
(0.000)

271
(0.000)

385
(0.000)

Q4 226
(0.000)

254
(0.000)

255
(0.000)

261
(0.000)

291
(0.000)

315
(0.000)

320
(0.000)

333
(0.000)

229
(0.000)

163
(0.000)

145
(0.000)

147
(0.000)

245
(0.000)

Q5 167
(0.000)

159
(0.000)

167
(0.000)

234
(0.000)

204
(0.000)

223
(0.000)

210
(0.000)

186
(0.000)

129
(0.000)

108
(0.000)

95
(0.000)

95
(0.000)

165
(0.000)

all 386
(0.000)

464
(0.000)

421
(0.000)

471
(0.000)

516
(0.000)

604
(0.000)

672
(0.000)

619
(0.000)

514
(0.000)

405
(0.000)

413
(0.000)

408
(0.000)

491
(0.000)

Panel D: AR coef estimates idiosyncratic component specialist inventory Iit (xit = yi,t−1)
Q1 0.28

(0.000)
0.27

(0.000)
0.26

(0.000)
0.22

(0.000)
0.25

(0.000)
0.27

(0.000)
0.28

(0.000)
0.29

(0.000)
0.28

(0.000)
0.34

(0.000)
0.37

(0.000)
0.25

(0.000)
0.28

(0.000)

Q2 0.47
(0.000)

0.46
(0.000)

0.44
(0.000)

0.38
(0.000)

0.35
(0.000)

0.34
(0.000)

0.36
(0.000)

0.32
(0.000)

0.25
(0.000)

0.28
(0.000)

0.33
(0.000)

0.25
(0.000)

0.35
(0.000)

Q3 0.59
(0.000)

0.59
(0.000)

0.56
(0.000)

0.51
(0.000)

0.49
(0.000)

0.45
(0.000)

0.41
(0.000)

0.41
(0.000)

0.30
(0.000)

0.31
(0.000)

0.34
(0.000)

0.24
(0.000)

0.43
(0.000)

Q4 0.74
(0.000)

0.73
(0.000)

0.71
(0.000)

0.66
(0.000)

0.63
(0.000)

0.63
(0.000)

0.59
(0.000)

0.57
(0.000)

0.40
(0.000)

0.38
(0.000)

0.36
(0.000)

0.29
(0.000)

0.56
(0.000)

Q5 0.82
(0.000)

0.80
(0.000)

0.80
(0.000)

0.77
(0.000)

0.78
(0.000)

0.79
(0.000)

0.77
(0.000)

0.76
(0.000)

0.66
(0.000)

0.61
(0.000)

0.57
(0.000)

0.51
(0.000)

0.72
(0.000)

all 0.58
(0.000)

0.57
(0.000)

0.56
(0.000)

0.51
(0.000)

0.50
(0.000)

0.50
(0.000)

0.48
(0.000)

0.47
(0.000)

0.38
(0.000)

0.38
(0.000)

0.39
(0.000)

0.31
(0.000)

0.47
(0.000)

<continued on next page>
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<continued from previous page>
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 all

Panel E: Regression coefficient log price change on lagged idiosyncratic component specialist inventory Ii,t−1

Q1 0.01
(0.005)

0.01
(0.000)

0.01
(0.009)

0.01
(0.000)

0.01
(0.005)

0.01
(0.135)

0.01
(0.005)

0.01
(0.005)

0.01
(0.001)

0.00
(0.249)

0.00
(0.063)

0.00
(0.135)

0.01
(0.000)

Q2 0.01
(0.041)

0.01
(0.009)

0.01
(0.015)

0.02
(0.000)

0.01
(0.041)

0.02
(0.000)

0.02
(0.001)

0.02
(0.041)

0.02
(0.000)

0.02
(0.135)

0.01
(0.135)

0.01
(0.063)

0.02
(0.000)

Q3 0.02
(0.010)

0.02
(0.001)

0.02
(0.045)

0.02
(0.000)

0.02
(0.145)

0.03
(0.001)

0.05
(0.000)

0.01
(0.000)

0.05
(0.000)

0.03
(0.017)

0.03
(0.102)

0.03
(0.199)

0.03
(0.000)

Q4 0.03
(0.063)

0.02
(0.135)

0.04
(0.000)

0.05
(0.000)

0.04
(0.000)

0.06
(0.000)

0.08
(0.000)

0.05
(0.000)

0.11
(0.000)

0.05
(0.026)

0.08
(0.000)

0.06
(0.026)

0.06
(0.000)

Q5 0.08
(0.000)

0.08
(0.199)

0.03
(0.010)

0.02
(0.017)

0.06
(0.006)

0.06
(0.416)

0.14
(0.000)

0.10
(0.000)

0.15
(0.000)

0.08
(0.009)

0.12
(0.008)

0.13
(0.500)

0.09
(0.000)

all 0.03
(0.000)

0.03
(0.000)

0.02
(0.000)

0.02
(0.000)

0.03
(0.000)

0.03
(0.000)

0.06
(0.000)

0.04
(0.000)

0.07
(0.000)

0.04
(0.000)

0.05
(0.000)

0.05
(0.008)

0.04
(0.000)

*/**: Significant at a 95%/99% level.
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Table 3: State space model estimates by year and size quintile

This table estimates the following state space model for a latent efficient price and an observed end-of-day midquote
price:

(observed price) pit = mit + sit

(unobserved efficient price) mit = mi,t−1 + βif̂t + wit wit = κiÎit + uit

(unobserved transitory price deviation) sit = αiIit + β0
i f̂t + · · ·+ β3

i f̂t−3 + εit

where i indexes over stocks and t indexes over days, mit is the end-of-day unobserved efficient price (‘state’), f̂t is a
midquote return common factor which is the cross-sectional average of the standardized midquote return series which
has been filtered with an AR(4) model to remove intertemporal dynamics, pit is end-of-day observed midquote, Iit is
the idiosyncratic part of the specialist end-of-day inventory in dollars that remains after removing a common factor

across specialist inventories, Îit is the idiosyncratic inventory innovation which is obtained as the residual of an AR(9)

model and captures the surprise part of the net imbalance, βj
i captures potential ‘overreaction’ or lagged adjustment

to common factor innovations, and wit and εit are mutually independent i.i.d. error terms. The model is estimated
using maximum likelihood estimates where the error terms wit and εit are assumed to be normally distributed. The
optimization is implemented in ox with ssfpack routines where we use the Kalman filter to evaluate the likelihood
(see Koopman, Shephard, and Doornik (1999)). The table reports p-values in brackets. These p-values are based
on a test statistic that counts the number of significant t-values across all stock-year estimates in the bin. The test
statistic is binomially distributed under the null (we use the 0.1 and 0.9 quantiles in the t-test).

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 all
Panel A: αi conditional price pressure
Q1 −0.03

(0.000)
−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.02
(0.000)

−0.01
(0.000)

−0.01
(0.000)

−0.01
(0.000)

−0.02
(0.000)

Q2 −0.06
(0.000)

−0.05
(0.000)

−0.05
(0.000)

−0.04
(0.000)

−0.03
(0.000)

−0.05
(0.000)

−0.05
(0.000)

−0.05
(0.000)

−0.05
(0.000)

−0.03
(0.001)

−0.03
(0.000)

−0.03
(0.000)

−0.04
(0.000)

Q3 −0.11
(0.000)

−0.09
(0.000)

−0.09
(0.000)

−0.07
(0.000)

−0.09
(0.000)

−0.12
(0.000)

−0.11
(0.000)

−0.06
(0.000)

−0.09
(0.000)

−0.06
(0.000)

−0.07
(0.000)

−0.06
(0.000)

−0.09
(0.000)

Q4 −0.33
(0.000)

−0.25
(0.000)

−0.30
(0.000)

−0.27
(0.000)

−0.26
(0.000)

−0.34
(0.000)

−0.27
(0.000)

−0.23
(0.000)

−0.27
(0.000)

−0.14
(0.000)

−0.19
(0.000)

−0.16
(0.000)

−0.25
(0.000)

Q5 −1.07
(0.000)

−1.04
(0.000)

−0.78
(0.000)

−0.74
(0.000)

−1.01
(0.000)

−1.09
(0.000)

−1.19
(0.000)

−1.30
(0.000)

−1.20
(0.000)

−0.86
(0.000)

−0.94
(0.000)

−0.87
(0.000)

−1.01
(0.000)

all −0.32
(0.000)

−0.29
(0.000)

−0.25
(0.000)

−0.23
(0.000)

−0.28
(0.000)

−0.32
(0.000)

−0.33
(0.000)

−0.33
(0.000)

−0.32
(0.000)

−0.22
(0.000)

−0.25
(0.000)

−0.23
(0.000)

−0.28
(0.000)

Panel B: |αi|σ(I)i (explained) transitory volatility i.e. unconditional price pressure
Q1 14 13 13 16 19 22 25 30 22 15 14 9 17
Q2 26 24 22 19 20 33 36 30 23 14 15 13 23
Q3 39 40 35 31 40 48 45 35 23 16 20 17 32
Q4 65 64 69 58 63 86 77 63 41 21 24 21 54
Q5 116 109 115 107 152 177 184 155 108 92 71 54 120
all 52 50 51 46 58 73 73 62 43 31 29 23 49
Panel C: κi informativeness order imbalance innovation Î
Q1 −0.08

(0.000)
−0.08
(0.000)

−0.08
(0.000)

−0.07
(0.000)

−0.08
(0.000)

−0.08
(0.000)

−0.09
(0.000)

−0.07
(0.000)

−0.07
(0.000)

−0.06
(0.000)

−0.06
(0.000)

−0.06
(0.000)

−0.07
(0.000)

Q2 −0.16
(0.000)

−0.13
(0.000)

−0.13
(0.000)

−0.14
(0.000)

−0.17
(0.000)

−0.15
(0.000)

−0.18
(0.000)

−0.15
(0.000)

−0.16
(0.000)

−0.15
(0.000)

−0.13
(0.000)

−0.13
(0.000)

−0.15
(0.000)

Q3 −0.22
(0.000)

−0.19
(0.000)

−0.18
(0.000)

−0.21
(0.000)

−0.25
(0.000)

−0.23
(0.000)

−0.26
(0.000)

−0.24
(0.000)

−0.26
(0.000)

−0.25
(0.000)

−0.26
(0.000)

−0.23
(0.000)

−0.23
(0.000)

Q4 −0.34
(0.000)

−0.28
(0.000)

−0.29
(0.000)

−0.37
(0.000)

−0.44
(0.000)

−0.36
(0.000)

−0.47
(0.000)

−0.43
(0.000)

−0.52
(0.000)

−0.56
(0.000)

−0.52
(0.000)

−0.50
(0.000)

−0.43
(0.000)

Q5 −0.59
(0.000)

−0.43
(0.000)

−0.61
(0.000)

−0.63
(0.000)

−0.72
(0.000)

−0.48
(0.000)

−0.73
(0.000)

−0.87
(0.000)

−1.25
(0.000)

−1.43
(0.000)

−1.29
(0.000)

−1.41
(0.000)

−0.87
(0.000)

all −0.28
(0.000)

−0.22
(0.000)

−0.26
(0.000)

−0.28
(0.000)

−0.34
(0.000)

−0.26
(0.000)

−0.35
(0.000)

−0.35
(0.000)

−0.46
(0.000)

−0.49
(0.000)

−0.45
(0.000)

−0.47
(0.000)

−0.35
(0.000)

Panel D: |κi|σ(Î)i explained permanent volatility
Q1 39 36 38 44 57 65 80 56 55 37 30 27 47
Q2 42 39 41 45 65 70 85 61 56 44 36 36 52
Q3 44 42 43 54 72 70 86 75 60 48 41 36 56
Q4 47 40 42 52 73 64 83 75 66 60 49 43 58
Q5 43 39 49 56 69 56 78 90 80 75 65 63 64
all 43 39 43 50 67 65 83 72 63 53 44 41 55

<continued on next page>
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<continued from previous page>
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 all

Panel E: σ(w)i permanent volatility
Q1 124 124 128 134 176 198 243 192 187 126 106 103 153
Q2 143 136 138 144 186 213 257 212 206 151 127 125 170
Q3 151 143 147 158 204 213 253 212 205 153 138 136 176
Q4 162 152 153 158 201 211 239 212 199 163 145 151 179
Q5 176 170 181 181 228 232 264 245 244 202 178 190 208
all 151 145 149 155 199 213 251 215 208 159 139 141 177

Panel F:
α2
iσ

2(I)i

σ2(w)i+β2
i σ

2(f̂)
ratio of transitory and permanent variance

Q1 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.02 0.02 0.03 0.01 0.02
Q2 0.08 0.09 0.04 0.03 0.02 0.04 0.03 0.03 0.02 0.01 0.02 0.02 0.03
Q3 0.28 0.27 0.16 0.09 0.13 0.19 0.05 0.07 0.02 0.01 0.04 0.09 0.12
Q4 0.30 0.47 0.47 0.28 0.23 0.47 0.22 0.16 0.06 0.03 0.04 0.05 0.23
Q5 1.11 1.42 1.14 1.16 1.24 2.55 1.96 1.09 0.79 2.10 0.61 0.62 1.32
all 0.36 0.45 0.36 0.31 0.32 0.65 0.46 0.28 0.18 0.44 0.15 0.16 0.34

Panel G:
α2
iσ

2(I)i
σ2(w)i

ratio of transitory and permanent ‘idiosyncratic’ variance
Q1 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.04 0.03 0.04 0.04 0.01 0.03
Q2 0.10 0.10 0.05 0.04 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.02 0.04
Q3 0.35 0.28 0.20 0.11 0.18 0.21 0.06 0.10 0.04 0.02 0.05 0.12 0.14
Q4 0.36 0.48 0.54 0.31 0.29 0.51 0.25 0.23 0.08 0.04 0.05 0.05 0.27
Q5 1.28 1.48 1.26 1.28 1.51 2.64 2.16 1.40 0.98 2.31 0.73 0.67 1.47
all 0.42 0.47 0.41 0.35 0.40 0.68 0.51 0.36 0.23 0.48 0.18 0.18 0.39
Panel H: σ(ε)i error term transitory volatility
Q1 20

(0.000)
17

(0.000)
25

(0.000)
30

(0.000)
24

(0.000)
20

(0.000)
31

(0.000)
22

(0.000)
31

(0.000)
18

(0.000)
12

(0.000)
15

(0.000)
22

(0.000)

Q2 19
(0.000)

19
(0.000)

21
(0.000)

28
(0.000)

24
(0.000)

22
(0.000)

43
(0.000)

21
(0.000)

39
(0.000)

23
(0.000)

17
(0.000)

19
(0.000)

25
(0.000)

Q3 19
(0.000)

17
(0.000)

22
(0.000)

23
(0.000)

27
(0.000)

30
(0.000)

45
(0.000)

27
(0.000)

41
(0.000)

25
(0.000)

20
(0.000)

20
(0.000)

26
(0.000)

Q4 28
(0.000)

25
(0.000)

23
(0.000)

26
(0.000)

18
(0.000)

23
(0.000)

42
(0.000)

30
(0.000)

43
(0.000)

30
(0.000)

30
(0.000)

24
(0.000)

29
(0.000)

Q5 42
(0.000)

42
(0.000)

34
(0.000)

25
(0.000)

21
(0.000)

29
(0.000)

47
(0.000)

38
(0.000)

39
(0.000)

28
(0.000)

28
(0.000)

25
(0.000)

33
(0.000)

all 26
(0.000)

24
(0.000)

25
(0.000)

27
(0.000)

23
(0.000)

25
(0.000)

42
(0.000)

28
(0.000)

39
(0.000)

25
(0.000)

21
(0.000)

21
(0.000)

27
(0.000)
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Table 4: Model’s primitive parameters and an analysis of the spread

This table analyzes the cost to liquidity demanders of a competitive intermediary who uses price pressure to control
her inventory position. The model’s primitive parameters consist of the liquidity demander’s total private value
rate λ and its dispersion 1

θ
, uncertainty about net liquidity demand σ(ε), a discount factor β, and the coefficient

of relative risk aversion (γ) which is the model’s absolute risk aversion (γ̃) divided by the intermediary’s expected
consumption at the competitive spread. The conditional price pressure estimates along with other trading variables
measured in the empirical part of the paper (sample averages in Panel A cf. Table 1 and 3) allows for identification
of the primitive parameters (Panel B) which in turn allow for a decomposition of the net cost to liquidity demanders
(investors) of liquidity supply by a competitive intermediary (Panel C). It expresses this net cost as a fraction of
transacted volume (‘spread’) and decomposes it into a spread received by the intermediary and a subsidy enjoyed
by the liquidity demanders at times when prices are pressured. It also calculates the Pareto efficient cost if the
intermediary were to internalize the subsidy enjoyed by the liquidity demander. Panel B and C report medians and
interquartile ranges (Q0.75-Q0.25 where Qi is quantile i) in parentheses.

Q1 Q2 Q3 Q4 Q5 all
Panel A: Measured variables that identify model’s primitive parameters (cf. Table 1 and 3)
conditional price pressure αi (bps per $1000) -0.02 -0.04 -0.09 -0.25 -1.01 -0.28
stdev daily inventory σ(I) ($1000) 1131 530 385 245 165 491
1st order autocorrelation inventory 0.28 0.35 0.43 0.56 0.72 0.47
price risk inventory σ(w)i (bps) 153 170 176 179 208 177
daily dollar volumea ($million) 10.86 2.98 1.43 0.60 0.21 3.22
effective half spread 8.41 12.46 16.50 24.60 46.12 21.62
daily discount factorb 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

Panel B: Identification of model’s primitive parameters
daily private value rate λ ($1000) 59.69

(241.59)
14.12
(37.71)

6.21
(13.39)

2.77
(4.63)

1.46
(2.31)

5.86
(21.73)

dispersion private value 1
θ
(bps) 171

(312)
135
(201)

148
(166)

187
(206)

307
(370)

186
(260)

intermediary’s relative risk aversion γ 0.24
(1.06)

0.15
(0.55)

0.11
(0.35)

0.09
(0.26)

0.05
(0.13)

0.10
(0.35)

Panel C: Decomposition of the spread paid by liquidity demander
(1) model-implied competitive spread (bps) 7.32

(15.81)
12.86
(25.31)

19.43
(40.04)

37.35
(68.62)

73.16
(149.27)

22.60
(57.68)

(2) price pressure subsidy to liq demander (bps) 0.58
(1.21)

1.40
(3.13)

2.63
(5.64)

6.00
(13.49)

15.52
(33.26)

2.88
(9.56)

(3) net spread to liq demanderc (1)-(2) (bps) 6.50
(14.14)

11.01
(22.33)

16.52
(33.16)

30.33
(55.40)

57.41
(114.93)

19.14
(47.18)

(4) constrained Pareto efficient spread (bps) 6.45
(14.07)

10.74
(21.59)

16.05
(31.87)

29.54
(53.53)

54.77
(110.32)

18.67
(45.48)

(5) deadweight lossc (3)-(4) (bps) 0.05
(0.11)

0.14
(0.38)

0.30
(0.80)

0.88
(2.18)

2.58
(5.68)

0.35
(1.51)

a: dollar volumeit ∗ specialist participit as a proxy for volume intermediated by the specialist
b: discount factor equals the reciprocal of the gross riskfree rate from Kenneth French’ website
c: the reported difference is the median of differences, not the difference of (reported) medians
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Figure 1: Price change decomposition given state space model estimates not using
inventory data
This figure depicts the observed end-of-day log price series (midquote price) and its unobserved efficient price (given
all data using the Kalman smoother) estimate not using inventory data for a representative stock (Rex Stores
Corporation, ticker RSC, CRSP PERMNO 68830). The model is defined as:

(observed price) pit = mit + sit

(unobserved efficient price) mit = mi,t−1 + βif̂t + wit

(unobserved transitory price deviation) sit = ϕisi,t−1 + β0
i f̂t + · · ·+ β3

i f̂t−3 + εit

where i indexes over stocks and t indexes over days, mit is the end-of-day unobserved efficient price (‘state’), f̂t is the
midquote return common factor which is the cross-sectional average of the standardized midquote return series which
has been filtered with an AR(4) model to remove intertemporal dynamics, pit is the end-of-day observed midquote
price, βj

i captures potential ‘overreaction’ or lagged adjustment to common factor innovations, and wit and εit are
mutually independent i.i.d. error terms. The model is estimated using maximum likelihood estimates where the error
terms wit and εit are assumed to be normally distributed. The first panel graphs these series recentered around the
first day’s estimate of the efficient price. The second panel graphs the price pressure—the difference between the
observed price and the efficient price—against the idiosyncratic inventory position of the specialist. The third graphs
the efficient price innovation against the contemporaneous unpredictable ‘surprise’ idiosyncratic inventory change
which is obtained as the residual of an AR(9) model.
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