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1 Introduction

How is the time interval between transactions associated with information processing in

financial markets? If a high trading intensity indicates the presence of informed traders,

should a liquidity trader steer clear of an active market in order to avoid adverse selection?

And is it prudent to protect non-informed agents by interrupting continuous trading in

a fast market (and re-start with a call auction)? These are important questions for aca-

demics, traders and exchange operators alike, and they have spurred a growing theoretical

and empirical body of literature.1 In a seminal paper, Dufour and Engle (2000) extend

Hasbrouck’s (1991a, 1991b) vector-autoregressive framework to account for time-varying

transaction intensity when measuring the informational content of trades. Dufour and

Engle’s (2000) findings are in line with a conventional wisdom of market microstructure:

that fast trading means informed trading.

This paper revisits the role of time in measuring the price impact of trades. We combine

Madhavan et al.’s (1997) spread decomposition model and the autoregressive conditional

duration (ACD) model introduced by Engle and Russell (1998), and study how time-

varying trade intensities affect the adverse selection component of the spread. Our empir-

ical findings, based on recent European and US data, contradict the “fast trading means

informed trading” paradigm. They indicate that short time intervals between trades rather

reflect the activity of impatient, yet uninformed traders. Our results thus re-emphasize

the empirical relevance of Admati and Pfleiderer’s (1988) rational expectations model and

strategic trading models like those of Parlour (1998) and Foucault (1999). Our study casts

doubt on the common wisdom that fast markets bear particularly high adverse selection

risks for uninformed market participants.

Classic microstructure theory delivers ambiguous predictions regarding the relation be-

tween transaction intensities and informativeness of trade events. Diamond and Verrecchia

(1987) show that in the presence of short sale constraints, longer intervals of trade inac-

tivity indicate bad news. In Easley and O’Hara’s (1992) model, informed traders split up

1See Hasbrouck (2007) and Biais et al. (2005) for recent surveys.
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their orders into smaller chunks in order to conceal their information. This behavior leads

to shorter durations between trades. In the same vein, Foster and Viswanathan (1990)

explain high activity by the presence of informed traders, which deters the uninformed

from trading. A contradictory prediction follows from Admati and Pfleiderer’s (1988)

model. Here, non-informed liquidity traders cluster during certain periods of the trading

day, which implies that trades in a fast market are less informative. Dufour and Engle’s

(2000) finding that trades occurring after short time intervals since the last transaction

are associated with a larger price impact than trades following long non-trading periods

thus corroborates the “fast trading means informed trading” hypothesis implied by Easley

and O’Hara’s (1992) model. This conclusion is supported by Furfine (2007) and Spierdijk

(2004), who also use VAR approaches based on midquote returns.

We contribute to the discussion from a different methodological angle. Instead of

using a multiple time series model, we draw on the class of spread decomposition models

put forth by Glosten and Harris (1988), Madhavan et al. (1997) and Huang and Stoll

(1997). The key parameter in Madhavan et al.’s (1997) model is the adverse selection

component of the spread, which indicates how liquidity suppliers assess the price impact of

incoming trades. We model the adverse selection component as a time-varying parameter

which depends on the time between trades. These trade durations are highly predictable,

exhibiting a pronounced diurnal pattern and a strong serial correlation (c.f. Engle and

Russell 1998). Since only the unpredictable component should have new informational

content, we identify the innovation component of the trade duration process using the

ACD model developed by Engle and Russell (1998). We derive moment conditions that

allow the joint estimation of structural and autoregressive parameters using the Generalized

Method of Moments (GMM). Our methodological contribution is thus to establish a link

between classic microstructure and the econometrics of ultra-high frequency data initiated

by Engle (2000).

Our empirical analysis is based on a cross-section of stocks traded on one of the most

important European stock markets, the Frankfurt Stock Exchange’s Xetra system, as well

as a matched sample of NYSE-traded U.S. stocks. Our results contradict the “fast trading
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means informed trading” paradigm. For both the European and the US samples we find

that transactions occurring during periods of high trading activity are less informative than

trades during less active periods. Moreover, the adverse selection component of the spread

is considerably smaller for trades after shorter durations. This finding is in sharp contrast

to the results of Dufour and Engle (2000). It is, however, in accordance with Admati and

Pfleiderer’s (1988) rational expectations model, and it is also consistent with the crowding-

out effect described in Parlour (1998), which works - in a nutshell - as follows. When spreads

are small and depth at the best quotes is high, the probability of execution of a limit order

decreases and, consequently, limit orders become less advantageous. Impatient traders will

thus switch to using market orders. The crowding-out of limit orders by market orders

results in an increased trading frequency and shorter inter-trade durations. But periods

of ample liquidity are associated with low price volatility and no asymmetric information.

Thus, active markets are expected to imply small price impacts of trades.

When we estimate Dufour and Engle’s (2000) VAR on our data, we are able to qual-

itatively confirm their findings and the resulting conclusions. The contradictory results

must therefore be rooted in the way the empirical methodologies make use of the data. We

argue that by thinning the sequence of quote changes at trade events, a self-selected sam-

ple is produced. The trade-event filtering performed by Dufour and Engle (2000) implies

that all quote revisions in between trades are implicitly associated with the previous trade

event. However, midquote changes can occur due to the processing of public information

unrelated to the previous trade event. We argue, therefore, that the trade-event filtering

of quote revisions drives the “fast trading means informed trading” result. The key differ-

ence between Dufour/Engle’s VAR and our structural alternative is that we do not rely on

filtered observed quote revisions, but assume that the suppliers of liquidity anticipate the

information revealed in subsequent trades. 2

2The obvious solution (at first sight) estimating the trade and quote VAR on non-filtered data is not feasible.
When pure quote revision events are included in the data, the VAR parameters cannot be made dependent
on the time between trades.
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The remainder of the paper is organized as follows. In Section 2 we describe the market

structure and the data, before going on to explain our empirical methodology in Section

3. The empirical results are then presented and discussed in Sections 4 and 5, before we

conclude our analysis in Section 6.

2 Market structure and data

Our empirical analysis uses data from the first quarter of 2004 from one of the largest

European Stock markets, the open limit order book system Xetra operating at the Frank-

furt Stock Exchange (FSE) together with a matched sample of NYSE stocks. The trading

process at the NYSE is well known, so we will focus on a brief description of the FSE-Xetra

trading environment. In Europe, FSE-Xetra is runner up in terms of turnover after the

London Stock Exchange.3 The trading rules are similar to other limit order book markets

around the world like Euronext, the Hong Kong Stock Exchange and the Australian Stock

Exchange. Between an opening and a closing call auction - and interrupted by another

mid day call auction - FSE-Xetra operates as a continuous double auction mechanism with

automatic matching of orders based on price and time priority. The transparency of the

market is only limited by the existence of hidden orders. These are (typically large) limit

orders with the special provision that a portion of the volume is initially kept hidden and

is thus not visible in the otherwise open book.

During the sample period, trading hours extended from 9.00 a.m. to 5.30 p.m.Central

European Time. No dedicated market makers are employed for the DAX stocks.4 FSE-

Xetra competes for order flow with some regional and international exchanges. The FSE

itself maintains a parallel floor trading system and some of our sample stocks were also

3According to data from September 2008 to September 2009 published by the World Federation of Exchanges
(http://www.world-exchanges.org/statistics/ytd-monthly). The Xetra system also operates at the Irish
and the Vienna Stock Exchange, the European Energy Exchange and the Shanghai Stock Exchange,
China’s largest securities market.

4For less actively traded stocks there are so-called Designated Sponsors - typically large banks - who are
required to provide a minimum liquidity level by simultaneously submitting competitive buy and sell limit
orders.
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cross-listed at the NYSE. However, for those stocks considered in our study, FSE-Xetra

clearly dominates the regional and international competitors in terms of market share.

Our data contain detailed information about all market events which occurred during

the first quarter of 2004. Based on these event histories, we perform a real-time recon-

struction of the sequences of best bid and ask prices and associated depth, time stamps,

transaction prices and trade volumes. One of the major advantages is that it is possible to

unambiguously identify whether a trade is buyer- or seller-initiated (something that is not

possible using the NYSE TAQ data). This avoids the biases that haunt the estimation of

structural parameters when the trade classification is error-prone (c.f. Boehmer et al. 2007).

insert Table 1 about here

Table 1 reports market capitalization, daily turnover, average daily number of trades,

average price, and the average quoted spread for our German sample, which consists of the

thirty stocks constituting the DAX30 index. The daily turnover of an average stock is about

109 million Euros, with 2100 daily trades per stock. The mean relative effective spread

amounts to 0.08 percent (3 Euro cent) and the mean relative realized spread is 0.01 percent

(0.2 Euro cent), indicating a liquid market.5 The table also displays how the securities are

sorted into four groups according to their trading frequency (activity quartiles). Group

one contains the most actively traded stocks, while group four is comprised of the least

frequently traded stocks. We also construct a matched sample of NYSE-listed stocks

using the daily trading volume as matching criterion, with the data taken from the TAQ

files supplied by the NYSE. Information about the NYSE sample is provided in Table

2. Throughout the paper we focus on the German sample and treat the US sample as a

robustness check, as the German data allows trades to accurately be classified as either

buyer- or seller-initiated.

insert Table 2 about here

5We define the realized spread as the difference between the transaction price and the quote midpoint after
10 minutes, multiplied by a trade indicator variable (1 for buyer-initiated trades, -1 for seller-initiated
trades).
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3 Methodology

3.1 Dufour and Engle’s trade and quote VAR

Before we describe our alternative methodology it is helpful to review how Dufour and

Engle (2000) quantify the role of time when measuring the price impact of a trade. Drawing

on Hasbrouck’s (1991a, 1991b) seminal work, they specify the following bivariate vector-

autoregression (VAR),

Ri =
5

∑

j=1

ajRi−j + γopenDiQi +
5

∑

j=0

bj,iQi−j + v1,i (1)

Qi =

5
∑

j=1

cjRi−j + γopenDi−1Qi−1 +

5
∑

j=1

djQi−j + v2,i, (2)

where bj,i = γj + δj ln(Ti−j). The trade indicator Qi takes the value of one if the ith trade

is buyer-initiated and minus one if it is seller-initiated. Ri denotes the midquote change in

response to the ith trade. Di indicates the first trade of the day. Ti measures the length

of the time interval between the ith trade occurring at calender time ti and the previous

trade at time ti−1 (trade duration). The larger bj,i (> 0), the greater the price impact of a

trade. Whether a shorter trade duration implies that a trade has increasing or decreasing

informativeness depends on the parameters δj . Negative δj imply that transactions occur-

ring after short trade durations are more informative than those after a longer non-trading

interval. As the computation of Hasbrouck’s (1991a) trade informativeness measure is not

possible, Dufour and Engle (2000) use illustrative impulse response functions to quantify

the overall effect of time between trades on trade informativeness6

6Hasbrouck (1991a) uses the MA(∞) representation of his bivariate trade and quote VAR to compute the
permanent impact of a trade on the midquote. The time-varying parameters bi,j in (1) render Hasbrouck’s
trade-informativeness measure time-varying as well. We will return to this issue in Section 5.
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3.2 A structural alternative

Following Dufour and Engle (2000), we formulate our alternative model in trade-event

time, i.e. each trade event contributes an observation. However, instead of using a VAR

framework, we draw on the class of spread decomposition models of which Glosten and

Harris (1988), Madhavan et al.(1997) and Huang and Stoll(1997) are the most prominent

examples. For the purpose of our paper, we adopt Madhavan et al.’s (1997) model, in

which the post-trade asset value, µi, evolves as:

µi = µi−1 + θ(Qi − E[Qi|Qi−1]) + εi. (3)

The parameter θ measures the trade informativeness associated with a surprise in the order

flow Qi − E[Qi|Qi−1]. The orthogonal innovation εi accounts for public news that has

accumulated since the last trade. Liquidity providers anticipate the effect of an incoming

trade by setting bid quote P a and ask quote P b as

P a
i = µi−1 + θ(1− ρQi−1) + φ+ εi (4)

P b
i = µi−1 − θ(1 + ρQi−1)− φ+ εi, (5)

where we have used that E[Qi|Qi−1] = ρQi−1, with ρ the first-order autocorrelation of the

trade indicator Q (c.f. Madhavan et al. 1997). The cost parameter φ accounts for order

processing and inventory holding costs born by the supplier of liquidity. With transactions

taking place either at the ask or bid, transaction prices are given by

Pi = µi + φQi + ξi, (6)

where ξi is an iid mean-zero disturbance which accounts for rounding errors due to dis-

creteness of price changes. Combining Equations (3) and (6), transaction price changes

are given by

∆Pi = θ(Qi − ρQi−1) + φ(Qi −Qi−1) + ui. (7)
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where ui = εi + ξi − ξi−1.

We account for the role of time in measuring the price impact of trade by specifying

the adverse selection parameter θ as a function of the duration since the last trade. Our

first specification is similar to that of Dufour and Engle’s VAR in that raw trade durations

(Ti) determine the price impact of trades,

φ(ti) = γφ +

M
∑

m=1

λφmdm,i (8)

θ(Ti, ti) = γθ +
M
∑

m=1

λθmdm,i + δ lnTi, (9)

where dm,i equals one if the i
th trade occurs within themth ofM time-of-day bins and is zero

otherwise. γφ, γθ, λφm and λθm are parameters. Allowing the adverse selection parameter θ

and the cost parameter φ to be time-of-day dependent accounts for the ∪−shaped time-of-

day pattern of the spread. Our specification bears resemblance to that of Dufour and Engle

(2000) in that sign and size of the parameter δ indicate whether a high trading activity is

associated with increased (δ < 0) or reduced trade informativeness (δ > 0).

insert Figure 1 about here

However, it is only the unexpected component of the trade duration process that should

carry informational content with respect to the fundamental asset value µ, as changes in µ

should be unpredictable. Yet it is well known that trade durations are highly predictable

(c.f. Engle and Russell 1998). They exhibit a clear-cut, inverted ∪-shaped intra-day (di-

urnal) pattern (see Figure 1), and significant serial correlation even after correcting for

diurnality. In our second specification we therefore assume that rather than raw trade du-

rations, duration shocks, innovations to the duration process, determine the price impact

of a trade:

θ(νi, ti) = γθ +
M
∑

m=1

λθmdm,i + δ ln νi. (10)

νi denotes the unexpected component of the trade duration process. To identify these

duration shocks, we follow Engle and Russell (1998) and separate the trade duration process
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into a deterministic time-of-day component, Φ(ti), an autoregressive component, ψi, and

an innovation component, νi,

Ti = Φ(ti)ψiνi, (11)

where E(νi) = 1. The autoregressive component ψi evolves as

ψi = ω + αT̃i−1 + βψi−1, (12)

where T̃i = Ti/Φ(ti). Equations 11 and 12 constitute Engle and Russell’s (1998) ACD

model. The conditional expected duration is given by Φ(ti)ψi, and νi is the innovation in

the duration process we seek to identify. We will refer to a model where transaction price

change are given by

∆Pi =
(

γφ +
M
∑

m=1

λφmdm,i

)

Qi −
(

γφ +
M
∑

m=1

λφmdm,i−1

)

Qi−1

+
(

γθ +

M
∑

m=1

λθmdm,i + δ ln νi

)

(Qi − ρQi−1) + ui (13)

as the MRR-ACD model.

3.3 Estimation

We propose a two-step procedure to estimate the MRR-ACD parameters. Following Engle

and Russell (1998), we first estimate the time-of-day function Φ(ti) using a polynomial

trigonometric regression (Eubank and Speckman 1990) and compute diurnally-adjusted

durations as T̃i = Ti/Φ̂(ti). In a second step, GMM estimates of the MRR-ACD parameter

vector θ = (γφ, λφ1 , . . . , λ
φ
M , γ

θ, λθ1, . . . , λ
θ
M , ρ, ω, α, β, δ)

′ are computed based on the moment
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where di = (d1,i, · · · , dM,i)
′ and zi = (Qi, Qi−1)

′. The first block of moment conditions

results from assuming orthogonality of the right-hand side variables in (13) and ui. The

moment condition E(QiQi−1−ρ) = 0 identifies ρ, the autocorrelation in the order flow. The

last block of moment conditions identifies the ACD parameters ω, α and β by exploiting the

ACD model assumptions E(νi) = 1 and zero covariance between νi and νi−j for all j 6= 0

(c.f. Grammig and Wellner 2002). The MRR-ACD and the associated GMM estimation

strategy is, to the best of our knowledge, the first attempt to link a structural model of

the trading process to the econometrics of high frequency data.

4 Results

Table 3 reports the estimation results for the MRR-ACD model based on the FSE data,

while Table 4 contains those for the matched sample of NYSE stocks.7

insert Tables 3 and 4 about here

The estimation results corroborate previous findings, but also provide new evidence

that contradicts conventional wisdom. In particular, the adverse selection component of

7The results for the specification with raw durations lead to the same conclusions.
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the spread λθ is considerably higher during the first half hour of the trading day. The L-

shaped time-of-day pattern of the adverse selection component is most pronounced for less

frequently traded stocks (see Figure 2), while the part of the adverse selection component

that can be attributed to duration shocks does not exhibit a discernible diurnal pattern.

The estimates of the λφ parameters imply that the order processing cost component is

significantly higher at the end of the day, consistent with the notion that liquidity providers

demand compensation for holding overnight inventory. These findings are in accordance

with Madhavan et al.’s (1997) explanation of the ∪-shaped diurnal pattern of the effective

spread.

insert Figure 2 about here

In order to assess the plausibility of the estimation results, in Table 5 we report the

cross-sectional correlations of MRR-ACD-implied spread components with observable stock

characteristics as well as with model-free estimates of spread components. The correlation

between the model-implied spread and the effective spread amounts to 0.996, and the

correlation between the implied adverse selection component and the price impact is 0.965.

The correlation between the implied non-information-related component of the spread and

the realized spread is 0.881. The negative correlations between the implied adverse selection

component and market capitalization and trading activity, respectively, conform the well-

known result that adverse selection effects are exacerbated for small-cap and less frequently

traded stocks. All in all, these results illustrate the economic plausibility of the MRR-ACD

specification.

insert Table 5 about here

The results discussed so far are both conclusive and unobtrusive. However, the esti-

mated relation between a trade duration shock and trade informativeness contradicts the

“fast trading means informed trading” paradigm. For the FSE sample, the estimates of the

key parameter δ in MRR-ACD Equation (10) are positive and significantly different from

zero for all stocks. In the NYSE sample, the estimate of δ is positive and significant for 25

12



of the 30 stocks. None of the estimates is negative (c.f. Tables 3 and 4). This implies that

a shorter time interval since the last trade tends to be associated with reduced informa-

tional content pertaining to the next trade. This result, and the conclusions that can be

derived from it, are in sharp contrast to the findings that Dufour and Engle (2000) report.

In their VAR analysis, the estimates of the δj parameters (Equation (1)) are significantly

negative, which suggests that shorter trade durations imply that incoming trades have a

greater price impact.

Before we provide and discuss explanations for these contradictory findings, let us assess

the economic significance of our estimation results. Although we focus on the FSE sample,

the story for the NYSE sample is qualitatively similar.

insert Figures 3 and 4 about here

Figures 3 and 4 illustrate the importance of time in measuring the price impact of trades.

To provide a concise view, we sort all trade events for a specific stock or activity quartile

by the size of the duration shock. We then group the trade observations into deciles, with

the first decile encompassing the trades associated with the smallest duration shocks, and

decile ten the trades with the largest duration shocks. For each decile, the standardized

adverse selection component is averaged across trades.8 Figure 3 shows that for the quartile

of least actively traded stocks, the standardized adverse selection component more than

triples from duration decile one to duration decile ten. Figure 4 depicts the decile plots

for four representative stocks, one from each of the trade activity quartiles. The negative

relation between trade duration shocks and trade informativeness is very similar across the

four stocks.9

8Standardization is performed by dividing the adverse selection component θ(νi, ti) by the average midquote
across the sample (P̄ ). Using non-standardized adverse selection components yields similar results. We
use the standardized components to enhance comparability across stocks. The average midquote is quite
different across the European sample stocks (see Table 1).

9Note that the positive relation between trade durations and the adverse selection component cannot be
explained by intra-day co-movements of trade durations and the adverse selection component. Figure 2
shows that the adverse selection component of the spread is highest during the first half-hour and then
flattens out. Figure 1, on the other hand, shows that trade durations exhibit an inverted ∪-shaped diurnal
pattern. These intra-day patterns rather imply a weakening of the positive relationship between trade
durations and trade informativeness.
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insert Table 6 about here

Further evidence for the economic importance of time in determining the price impact

of trades is provided in Table 6. Here we report the MRR-ACD implied adverse selection

component as a percentage of the implied spread, the share of the implied spread that is

attributable to duration shocks, and the share of the implied adverse selection component

due to duration shocks. These ratios are averaged across the trades in the stocks of the

four activity quartiles. Table 6 shows that the share of the MRR-ACD implied effective

spread attributable to the adverse selection component is highest for the least actively

traded stocks, ranging from almost 64% (least active stocks) to 45 % (most active stocks).

What is new is the quantification of the role of time in the process. The share of the

spread that can be attributed to duration shocks ranges from 13.4 % for the most active

stocks to to 18 % (least active quartile). Roughly one quarter of the adverse selection

component is explained by duration shocks, a number that is quite stable across the four

activity quartiles.

5 Discussion

The results reported in the previous section contradict the conventional wisdom that fast

trading means informed trading. They rather emphasize Admati and Pfleiderer’s (1988)

notion of clustered liquidity trading, a process that implies that intensive trading is as-

sociated with little or no trade informativeness. Our results are also consistent with the

predictions from the strategic trading models developed by Foucault (1999) and Parlour

(1998).

Parlour’s (1998) crowding-out effect is particularly illuminating as it gives an alternative

view of the relationship between transaction intensity and informed trading. Consider a

market state with little information asymmetry and low volatility due to only a modicum

of public information flow. In such a situation market liquidity will be ample. The spread

will be narrow, possibly reduced to the minimum tick size (c.f. Foucault 1999); the inside
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depth will be high as patient traders queue at the best quotes. First-come-first-serve rules,

however, imply that the expected time taken to fill a new limit order entered at the best

quote increases. The small spread entails reduced execution costs for market order traders.

Impatient market participants will become more aggressive and switch from limit order to

market order trading in an attempt to get their order filled under those favorable conditions,

causing trading intensity to increase. The crowding-out of limit orders by market orders

thus implies small trade durations during non-informative (or not particularly informative)

periods. Empirical evidence corroborating the crowding-out effect is provided by Griffiths

et al. (2000), Ranaldo (2004) and Hall and Hautsch (2006).

But why do the two methodological alternatives, the Dufour/Engle-VAR and the MRR-

ACD, deliver such contradictory results? A potential explanation is that the models have

been applied to different data. Dufour and Engle use 1991 data from the NYSE, which

then was a hybrid market, while our more recent data come from a limit order book

system. In order to test whether this is a relevant factor we estimate the Dufour/Engle-

VAR using our data. Table 7 shows that the results that we obtain are qualitatively similar

to those reported by Dufour and Engle (2000), with the estimates of the key parameter

δ0 in Equation (1) significantly negative for all sample stocks. Different trading protocols

or different sample periods therefore cannot explain the contradictory results. The reason

must lie in the way the the Dufour/Engle VAR and the MRR-ACD make use of the data.

Let us investigate this issue further.

insert Table 7 about here

Both the Dufour/Engle-VAR and the MRR-ACD are formulated in trade-event time,

where each trade event constitutes an observation. However, the price variable in both

models is different. In the Dufour/Engle-VAR it is themidquote change that is immediately

caused by or subsequently observed after the trade event (see Equation (1)). The MRR-

ACD, on the other hand, utilizes changes in transaction prices (see Equation (7)).

insert Table 8 about here
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Sequences of transaction price and midquote changes can be markedly different, as

illustrated in Table 8. At time t0, the best ask is at 105, and the best bid at 100. At

t1 a buyer-initiated trade occurs with a volume smaller than the depth at the best ask.

The transaction price is 105. The state of the market remains unchanged until the next

trade occurs at t2, when a market-to-limit buy order arrives with limit price equal to 105

and a limit volume that exceeds the depth at the best ask.10 The market-to-limit order

(MLO) first consumes the depth at the best ask, implying again a transaction price of

105. The non-executed volume is immediately entered as the new best bid price, which

improves from 100 to 105. The new midquote is now 107.5. Finally, at t3, a marked order

seller, seizing the opportunity provided by the improved bid, consumes the remaining MLO

volume completely. The transaction price is again 105; the midquote after the trade equals

105. Throughout this sequence of trade events, the transaction price remains the same,

while the midquote changes considerably.

It is important to note that Dufour and Engle (2000) formulate their bivariate trade

and quote VAR in a way that differs with respect to one crucial detail from Hasbrouck’s

(1991a) original formulation. Hasbrouck (1991a) also works in event time, but in his data

set both trades and quote revisions are recorded as observations. As a matter of fact, quote

revisions often occur without intermittent trades, simply because of public news arrival. In

Hasbrouck’s (1991) original formulation of the bivariate trade and quote VAR, the trade

indicator Qi is zero whenever there is a quote revision event (without a trade). By contrast,

all quote revision events are filtered out in the Dufour/Engle VAR. As a matter of fact,

the filtering is necessary to incorporate time between trades in the trade and quote VAR

(1) and (2). If intermittent quote revision events were allowed, modeling the dependence

of the VAR parameters on the time between trades would not be feasible.

10A market-to-limit order (MLO) is executed at the best quote on the opposite side of the market. If the
volume exceeds the depth at that price, the remainder of the order is converted into a limit order with a
price limit equal to that of the exhausted limit order at the opposite side of the market. An MLO thus
simultaneously demands and supplies liquidity. An MLO represents a suitable instrument to implement
the strategy of an impatient, yet price-sensitive trader who is not willing to accept a price worse than the
specified limit. A limit order with a price limit that makes the order immediately executable and a volume
that exceeds the executable volume has the same effect as an MLO.
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Beltran-Lopez et al. (2010) propose an alternative method to account for time-varying

trade intensity which also draws on Hasbrouck’s (1991a) VAR framework. They slice their

transaction level data into time intervals determined by a given number of trade events and

estimate the trade and quote VAR (including quote revision events) for each of the intervals.

Beltran-Lopez et al. (2010) then compute Hasbrouck’s (1991a) trade informativeness mea-

sure, the long-run impact of a trade event on the midquote, for each of the time intervals,

and correlate the resulting time series of trade informativeness measures with characteris-

tics of the time intervals. They report that trade informativeness is positively correlated

with volatility and spread, and negatively with order book liquidity. They also report that

trade informativeness is positively correlated with the average duration between trades

during the estimation interval. This implies that times of high trading intensity tend to

be associated with low trade informativeness and ample liquidity. This result is consistent

with the crowding-out story above and with the results of our MRR-ACD model.

To summarize, our explanation for the different findings obtained using the Dufour/Engle

VAR methodology and the MRR-ACD model is as follows. We believe that the thinning

of quote changes at trade events produces a self-selected sample. The trade-event filtering

implies that all quote revisions in between two trades are implicitly associated with the

previous trade event, ignoring the fact that these midquote changes may be due to the

processing of public information unrelated to the trade event. Using Hasbrouck’s (1991a)

original VAR formulation, i.e. including interjacent quote revision events, or the structural

MRR-ACD, reverses the “fast trading means informed trading” result. The key difference

between the Dufour/Engle VAR and the MRR-ACD, which both work in trade-event time,

is that the latter does not rely on filtered observed quote revisions, but assumes that the

suppliers of liquidity anticipate the information revealed by subsequent trades when setting

(or revising) their quotes.
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6 Conclusion

This paper provides new evidence regarding the role of time in measuring the informational

content of trades. Instead of using the vector-autoregressive methodology employed by

Dufour and Engle (2000), we combine Madhavan et al.’s (1997) spread decomposition

model and Engle and Russell’s (1998) autoregressive conditional duration model. We

estimate the resulting MRR-ACD model on a cross section of stocks traded on one of

the largest Continental European stock markets, the Frankfurt Stock Exchange’s Xetra

system, and a matched sample of NYSE traded stocks. One of the advantages of using the

German data is the excellent quality of the data, which allows us to avoid misclassification

of buyer- and seller-initiated trades. This is of particular importance for both the VAR

and the MRR-ACD methodology.

Dufour and Engle’s (2000) paper provided strong support for the hypothesis that “fast

trading means informed trading”, one of the key predictions implied by Easley and O’Hara’s

(1992) microstructure model, and arguably part of the conventional wisdom of market

microstructure. We provide new and contradictory evidence. Like Dufour and Engle

(2000), we also find that time matters when measuring the informational content of trades,

both from a statistical and an economic point of view. However, we do not find that the

informational content of a trade increases with shorter durations since the last trade: it

rather decreases. Our results are thus more in accordance with the predictions derived

from Admati and Pfleiderer’s (1988) model and with the crowding-out effect as described

in Parlour (1998).

When we re-estimate Dufour and Engle’s (2000) VAR model on our data set we find

results consistent with theirs. The contradictory findings are thus not explained by different

sample periods or differences in the microstructure of the markets under scrutiny. Instead,

we argue that the difference lies in the specification of the data set. Both the VAR and the

MRR-ACD model are estimated in trade time and each trade is recorded as an observation.

However, estimation of the VAR is based on a trade indicator variable and changes in

the quote midpoint, while estimation of the MRR-ACD is based on a trade indicator and
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transaction price changes. The differences between price changes and midquote changes can

be substantial. In particular, market-to-limit orders and large, executable limit orders have

a large impact on quote midpoints but may have little impact on transaction prices. We

argue that these differences are the cause of the contradictory findings obtained when using

the two estimation approaches. We further believe that estimation based on transaction

prices yields more valid results. This view is corroborated by evidence reported recently

in Beltran-Lopez et al. (2010).

Our results have important implications. They contradict the common wisdom that

fast trading is informed trading, and rather support the predictions of models such as those

of Admati and Pfleiderer (1988), Parlour (1998) and Foucault (1999). They further imply

that uninformed traders are not disadvantaged in fast markets and that, therefore, there

is no cause to halt trading in a fast market.
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Table 1: Descriptive Statistics. European sample stocks. The table reports characteristics of the FSE-Xetra traded stocks
constituting the DAX index. The sample period is January 2, 2004 to March 31, 2004. Daily turnover is the average turnover
(mill. Euros) per trading day and Daily nb. trades the average daily number of trades. The following indicators are averages
over the trade events. P̄ is the midquote (prevailing before the trade). Effective Spread (%) is the Effective Spread (in Euros)
divided by the prevailing midquote and Realized Spread (%) the Realized Spread (in Euros) divided by the prevailing midquote.
Price Impact (in Euros) is computed as the difference between effective and realized spread, and Price Impact (%) gives the price
impact (difference between effective and realized spread) relative to the prevailing midquote. Market cap. reports the market
capitalization in million Euros at the end of December 2003. Stocks are sorted into four groups according to the daily number of
trades. Horizontal lines separate the four trading activity quartiles.

Ticker Company Name
Daily Market Daily nb. Avg. Effective Effective Realized Realized Price Price Trade

Turnover cap. trades P̄ Spread Spread Spread Spread Impact Impact Activity
(Mill.) (Mill.) (e) (e) (%) (e) (%) (e) (%) Quartile

ALV ALLIANZ 289.98 33805 4523 100.1 0.049 0.049 0.010 0.010 0.039 0.039

1

DTE DEUTSCHE TELEKOM 350.63 34858 4445 15.7 0.011 0.072 0.005 0.031 0.006 0.041
SIE SIEMENS 321.70 52893 4418 64.0 0.026 0.041 0.004 0.006 0.022 0.035
DBK DEUTSCHE BANK 309.28 38228 3961 67.2 0.030 0.044 0.003 0.004 0.027 0.039
MUV2 MUENCH. RUECKVERS. 207.35 16396 3425 93.9 0.046 0.049 0.005 0.005 0.042 0.045
DCX DAIMLERCHRYSLER 187.74 30316 3309 36.4 0.020 0.055 0.004 0.010 0.016 0.044
EOA E.ON 160.63 33753 2871 52.5 0.025 0.048 0.001 0.003 0.024 0.046
SAP SAP 184.63 27412 2806 131.5 0.065 0.049 0.002 0.001 0.063 0.048

2

IFX INFINEON 146.46 4790 2799 11.6 0.012 0.104 0.005 0.040 0.007 0.064
BAS BASF 124.43 25425 2580 43.3 0.022 0.051 0.001 0.002 0.021 0.049
VOW VOLKSWAGEN 104.25 9688 2545 39.2 0.022 0.056 0.002 0.004 0.020 0.052
BAY BAYER 88.78 15911 2400 23.1 0.017 0.076 0.003 0.012 0.015 0.064
RWE RWE 97.66 12653 2314 33.8 0.021 0.062 0.001 0.002 0.020 0.060
BMW BMW 87.85 12211 2110 34.7 0.021 0.060 0.001 0.003 0.020 0.057
HVM HYPO-VEREINSBANK 98.35 6629 1937 18.7 0.018 0.098 0.003 0.019 0.015 0.079
SCH SCHERING 51.41 7055 1523 40.8 0.029 0.071 0.002 0.004 0.027 0.067

3

CBK COMMERZBANK 53.17 7569 1450 15.4 0.015 0.100 0.004 0.023 0.012 0.077
LHA LUFTHANSA 43.95 4548 1352 14.2 0.016 0.111 0.003 0.022 0.012 0.088
DPW DEUTSCHE POST 43.84 6806 1315 18.2 0.018 0.097 0.003 0.018 0.014 0.079
TKA THYSSENKRUPP 37.89 6450 1262 15.9 0.018 0.111 0.005 0.029 0.013 0.083
MEO METRO 38.87 5018 1235 35.0 0.031 0.089 0.000 0.000 0.031 0.090
ALT ALTANA 30.99 3338 1095 48.6 0.039 0.079 0.004 0.008 0.035 0.071
TUI TUI 26.28 2025 1063 18.7 0.023 0.125 0.003 0.015 0.020 0.109
MAN MAN 27.69 2434 1057 27.7 0.027 0.096 0.001 0.003 0.026 0.094

4

CONT CONTINENTAL 25.63 4060 1002 31.6 0.029 0.092 -0.003 -0.011 0.032 0.103
DB1 DEUTSCHE BOERSE 35.70 4847 982 46.9 0.035 0.075 0.001 0.003 0.034 0.072
ADS ADIDAS-SALOMON 31.98 4104 980 92.6 0.065 0.070 -0.002 -0.002 0.067 0.072
LIN LINDE AG 22.38 3448 896 43.6 0.035 0.080 -0.004 -0.009 0.039 0.090
HEN3 HENKEL 18.17 3682 702 65.9 0.050 0.077 0.003 0.005 0.047 0.072
FME FRESENIUS MEDICAL CARE 12.85 1944 621 54.0 0.053 0.098 0.006 0.010 0.047 0.088

Average 108.68 14076 2099 44.5 0.030 0.076 0.002 0.009 0.027 0.067
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Table 2: Matched sample of NYSE traded stocks. For each DAX stock we compare the daily average traded volume to each
NYSE traded stock of the S&P 500. We match the NYSE stock that minimizes the absolute difference. ∗ Firm changed its ticker
symbol in 2006. We use the 2004 ticker symbols available in our data.

Daily Daily
Ticker Company Name (FSE) Turnover Ticker Company Name (NYSE) Turnover

(Mill.e) (Mill. e)

DTE DEUTSCHE TELEKOM 350.63 XOM EXXON MOBIL 375.45
SIE SIEMENS 321.70 JPM J.P. MORGAN CHASE 334.96
DBK DEUTSCHE BANK 309.28 JNJ JOHNSON & JOHNSON 309.25
ALV ALLIANZ 289.98 AIG AMERICAN INT’L. 288.35
MUV2 MUENCH. RUECKVERS. 207.35 MWD∗ MORGAN STANLEY 205.98
DCX DAIMLERCHRYSLER 187.74 MDT MEDTRONIC 188.80
SAP SAP 184.63 WYE WYETH 183.87
EOA E.ON 160.63 ABT ABBOTT LABS 160.45
IFX INFINEON 146.46 KSS KOHL’S 146.28
BAS BASF 124.43 LMT LOCKHEED MARTIN 123.88
VOW VOLKSWAGEN 104.25 CAH CARDINAL HEALTH 105.51
HVM HYPO-VEREINSBANK 98.35 STJ ST. JUDE MEDICAL 98.50
RWE RWE 97.66 A AGILENT TECHNOLOGIES 97.45
BAY BAYER 88.78 ALL ALLSTATE 88.28
BMW BMW 87.85 HDI∗ HARLEY DAVIDSON 88.26
CBK COMMERZBANK 53.17 CVS CVS 53.02
SCH SCHERING 51.41 MHS MEDCO HEALTH SOLUTIONS 51.30
LHA LUFTHANSA 43.95 BDX BECTON, DICKINSON 43.99
DPW DEUTSCHE POST 43.84 RTN RAYTHEON 43.83
MEO METRO 38.87 JBL JABIL CIRCUIT 38.76
TKA THYSSENKRUPP 37.89 JCI JOHNSON CONTROLS 37.93
DB1 DEUTSCHE BOERSE 35.70 BBT BB & T 35.68
ADS ADIDAS-SALOMON 31.98 DOV DOVER 31.97
ALT ALTANA 30.99 BNI BURLINGTON NORTH. SANTA FE 30.93
MAN MAN 27.69 MBI MBIA 27.63
TUI TUI 26.28 BCR BARD (C.R.) 26.33
CONT CONTINENTAL 25.63 BDK BLACK & DECKER 25.68
LIN LINDE AG 22.38 CBE COOPER INDUSTRIES 22.32
HEN3 HENKEL 18.17 DYN DYNEGY 18.09
FME FRESENIUS MEDICAL CARE 12.85 TMK TORCHMARK 12.92
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Table 3: MRR-ACD estimation results: European sample. The table reports first stage GMM parameter estimates and p−values
averaged across stocks, as well as the number of stocks for which parameter estimates are significant and positive or negative. The significance
level is α = 1%. GMM estimation makes use of the moment conditions in 14 with J = 12. The first panel (overall) reports the results including
all thirty stocks; the other panels break down the statistics according to trading activity quartile. Time-of-day dummy variables are defined
to mark M = 6 periods of the trading day: 9:00 to 9:30 a.m.; 9:30 - 11:00 a.m.; 2:00 - 3:30 p.m.; 3:30 - 5:00 p.m., and 5:00 - 5:30 p.m.. The
reference period is 11:00 a.m - 2:00p.m..

Overall 1st Quartile (most active) 2nd Quartile 3rd Quartile 4th Quartile (least active)
Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig
est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg]

δ 0.0043 (0.00) [30, 0] 0.0040 (0.00) [7, 0] 0.0034 (0.00) [8, 0] 0.0031 (0.00) [8, 0] 0.0069 (0.00) [7, 0]

γφ 0.0052 (0.00) [30, 0] 0.0063 (0.00) [7, 0] 0.0048 (0.00) [8, 0] 0.0045 (0.00) [8, 0] 0.0056 (0.00) [7, 0]

λφ
1

0.0030 (0.01) [28, 0] 0.0020 (0.00) [7, 0] 0.0017 (0.00) [8, 0] 0.0024 (0.00) [7, 0] 0.0060 (0.03) [6, 0]

λφ
2

0.0003 (0.23) [12, 0] 0.0003 (0.26) [4, 0] 0.0004 (0.12) [5, 0] 0.0004 (0.14) [3, 0] 0.0002 (0.45) [0, 0]

λφ
3

-0.0003 (0.29) [3, 4] -0.0002 (0.32) [1, 1] -0.0001 (0.32) [2, 1] -0.0005 (0.17) [0, 1] -0.0006 (0.37) [0, 1]

λφ
4

-0.0005 (0.23) [1, 7] -0.0008 (0.34) [0, 3] -0.0002 (0.21) [1, 1] -0.0006 (0.05) [0, 3] -0.0004 (0.33) [0, 0]

λφ
5

0.0007 (0.16) [14, 2] 0.0003 (0.20) [4, 1] 0.0006 (0.02) [6, 0] 0.0001 (0.28) [0, 1] 0.0018 (0.13) [4, 0]
γθ 0.0040 (0.00) [30, 0] 0.0033 (0.00) [7, 0] 0.0033 (0.00) [8, 0] 0.0031 (0.00) [8, 0] 0.0066 (0.00) [7, 0]

λθ
1

0.0051 (0.03) [28, 0] 0.0032 (0.03) [6, 0] 0.0029 (0.09) [7, 0] 0.0043 (0.00) [8, 0] 0.0103 (0.00) [7, 0]

λθ
2

0.0012 (0.15) [14, 2] 0.0011 (0.02) [4, 1] 0.0004 (0.37) [1, 1] 0.0009 (0.17) [4, 0] 0.0024 (0.01) [5, 0]

λθ
3 0.0002 (0.23) [3, 5] 0.0003 (0.12) [2, 1] 0.0000 (0.23) [0, 1] 0.0002 (0.10) [1, 3] 0.0003 (0.47) [0, 0]

λθ
4

0.0002 (0.29) [5, 4] 0.0009 (0.14) [3, 1] -0.0001 (0.34) [0, 2] 0.0002 (0.36) [1, 1] 0.0000 (0.32) [1, 0]

λθ
5 -0.0003 (0.28) [1, 11] -0.0003 (0.08) [0, 5] -0.0008 (0.09) [0, 5] 0.0003 (0.40) [1, 1] -0.0005 (0.55) [0, 0]
ρ 0.2204 (0.00) [30, 0] 0.2203 (0.00) [7, 0] 0.2067 (0.00) [8, 0] 0.2113 (0.00) [8, 0] 0.2465 (0.00) [7, 0]
ω 0.0721 (0.00) [30, 0] 0.0842 (0.00) [7, 0] 0.0714 (0.00) [8, 0] 0.0641 (0.00) [8, 0] 0.0700 (0.00) [7, 0]
α 0.1252 (0.00) [30, 0] 0.1544 (0.00) [7, 0] 0.1354 (0.00) [8, 0] 0.1121 (0.00) [8, 0] 0.0994 (0.00) [7, 0]
β 0.8050 (0.00) [30, 0] 0.7659 (0.00) [7, 0] 0.7960 (0.00) [8, 0] 0.8248 (0.00) [8, 0] 0.8320 (0.00) [7, 0]
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Table 4: MRR-ACD estimation results: NYSE sample. The
table reports first-stage GMM parameter estimates and p−values aver-
aged across stocks, as well as the number of stocks for which parameter
estimates are significant and positive or negative. The significance level
is α = 1%. GMM estimation makes use of the moment conditions of
Equation (14) with J = 12. Following Madhavan et al. (1997), time-of-
day dummy variables are defined to mark M = 5 periods of the trading
day: the first half hour, 9:30 to 10:00 a.m; 10:00 to 11:30 a.m; 2:00 to
3:30 p.m; and the final half hour, 3:30 to 4:00 p.m. The reference period
is 11:30 a.m. to 2:00 p.m..

Overall
Avg. Avg. # sig
est. p-val [pos, neg]

δ 0.0009 (0.06) [25, 0]
γφ 0.0021 (0.00) [30, 0]

λφ1 0.0007 (0.05) [19, 0]

λφ2 0.0001 (0.20) [13, 1]

λφ4 0.0001 (0.20) [7, 2]

λφ5 0.0005 (0.09) [19, 2]
γθ 0.0029 (0.00) [30, 0]

λθ1 0.0018 (0.03) [25, 0]

λθ2 0.0006 (0.05) [19, 1]

λθ3 -0.0001 (0.31) [2, 6]

λθ4 -0.0006 (0.05) [0, 24]
ρ 0.2731 (0.00) [30, 0]
ω 0.0457 (0.03) [26, 0]
α 0.0468 (0.01) [28, 0]
β 0.9077 (0.00) [30, 0]
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Table 5: Cross-sectional correlations of MRR-ACD spread com-
ponents with stock characteristics. European sample. The ta-
ble reports cross-sectional correlations of MRR-ACD spread components
with relative effective and realized spread, relative price impact, market
capitalization and trading frequency (see caption of Table 1 for defini-
tions of these indicators). To account for cross-sectional differences in
the level of stock prices, standardized spread components implied by the
MRR-ACD are computed as θ(νi, ti)/P̄ (adverse selection component),
and φ(ti)/P̄ (non-informational component), where P̄ denotes the av-
erage midquote of the stock across the sample. φ(ti) and θ(νi, ti) are
defined in Equations (8) and (10), respectively. ISi denotes the relative
implied spread computed as 2[θ(νi, ti) + φ(ti)]/P̄ . Spread components,
spreads and price impacts are averaged over the trades in each stock.
Cross-sectional correlations are computed using the data for the 30 sam-
ple stocks. The numbers in parentheses are p−values.

Effective Realized Price Market cap. Daily nb.
Spread (%) Spread (%) Impact (%) (Mill.) trades

θ(νi, ti)/P̄ 0.782 -0.144 0.965 -0.802 -0.893
(0.000) (0.448) (0.000) (0.000) (0.000)

φ(ti)/P̄ 0.763 0.881 0.373 -0.351 -0.153
(0.000) (0.000) (0.043) (0.057) (0.419)

ISi 0.996 0.505 0.845 -0.730 -0.653
(0.000) (0.004) (0.000) (0.000) (0.000)
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Table 6: Components of the MRR-ACD implied
spread. The table reports the share of the implied spread
explained by the adverse selection component θ(νi,ti)

θ(νi,ti)+φ(ti)
,

where φ(ti) and θ(νi, ti) are defined in Equations (8) and
(10), respectively. It also shows the share of the implied
spread attributable to duration shocks δ ln νi

θ(νi,ti)+φ(ti)
, and the

share of the adverse selection component attributable to du-
ration shocks δ ln νi

θ(νi,ti)
. The ratios are averaged over all trades

in the stocks belonging to same trade activity quartile, as
well as over all trades in all sample stocks (last row). The
numbers in the table are percentages.

θ(νi,ti)
θ(νi,ti)+φ(ti)

δ ln νi
θ(νi,ti)+φ(ti)

δ ln νi
θ(νi,ti)

1st Quartile (most active) 45.0 13.4 26.4
2nd Quartile 48.2 14.1 26.6
3rd Quartile 50.7 14.0 25.3
4th Quartile (least active) 63.8 18.0 26.5
All stocks 48.8 14.2 26.3
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Table 7: Estimation results for Dufour and Engle (2000) model estimated on European sample. The table reports the estimation results
for the quote revision equation in the Dufour and Engle (2000) model, Ri =

∑5
j=1 ajRi−j +γopenDiQi+

∑5
j=0 bjQi−j +v1,i where bj = γj + δj ln(Tt−j)

estimated on the FSE-Xetra sample. We focus on the δ parameters which capture the duration impact as well as γopen. The first two columns report
OLS parameter estimates and p−values based on Newey-West standard errors averaged across all stocks. The third column reports the number
of significant (α = 1%) parameters across the thirty FSE-Xetra stocks. The other panels report these statistics broken down according to trading
activity quartile.

Overall 1st Quartile (most active) 2nd Quartile 3rd Quartile 4th Quartile (least active)
Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig
est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg]

δ0 -0.0010 (0.00) [0, 30] -0.0009 (0.00) [0, 7] -0.0009 (0.00) [0, 8] -0.0010 (0.00) [0, 8] -0.0011 (0.00) [0, 7]
δ1 0.0002 (0.16) [15, 0] 0.0003 (0.03) [6, 0] 0.0003 (0.00) [7, 0] 0.0002 (0.23) [2, 0] 0.0001 (0.40) [0, 0]
δ2 0.0002 (0.14) [16, 0] 0.0002 (0.00) [7, 0] 0.0002 (0.09) [5, 0] 0.0002 (0.13) [3, 0] 0.0001 (0.35) [1, 0]
δ3 0.0001 (0.17) [9, 0] 0.0001 (0.03) [5, 0] 0.0002 (0.06) [4, 0] 0.0001 (0.32) [0, 0] 0.0001 (0.27) [0, 0]
δ4 0.0001 (0.15) [10, 0] 0.0001 (0.07) [5, 0] 0.0002 (0.03) [3, 0] 0.0001 (0.22) [0, 0] 0.0002 (0.30) [2, 0]
δ5 0.0002 (0.14) [17, 0] 0.0002 (0.13) [5, 0] 0.0002 (0.14) [5, 0] 0.0003 (0.06) [5, 0] 0.0002 (0.22) [2, 0]

γopen 0.0128 (0.00) [30, 0] 0.0055 (0.00) [7, 0] 0.0083 (0.00) [8, 0] 0.0159 (0.00) [8, 0] 0.0218 (0.00) [7, 0]
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Table 8: Effect of three trades on midquote (MQ) and transaction prices (P )

t0 t1 t2 t3
initial state small buyer-

initiated trade
(P=105)

market-to-limit
buy order with
limit price
P = 105 takes
best ask and
improves the best
bid

remaining vol-
ume of MLO
consumed by
seller-initiated
trade (P = 105)

2nd ask 110 110
best ask 105 105 110 110
MQ 102.5 102.5 107.5 105
best bid 100 100 105 100
2nd bid 90 90 100 90
3rd bid 90

∆ MQ 0 4.9% -2.3%

∆P 0 0 0
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Figure 1: Intra-day pattern of trade durations: European sample. We compute
for each ten-minute interval the average trade duration (in seconds) and plot each mean
against the respective interval. All trade events of the stocks belonging to the same trading
activity quartile are pooled. The panels above display the results for each of the four trading
activity quartiles, with the first and last quartiles representing those for the groups of most
and least frequently traded stocks respectively. The dashed lines are the 95% confidence
intervals.
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Figure 2: Intra-day patterns of the MRR-ACD adverse selection component.
We split the MRR-ACD adverse selection parameter θ(νi, ti) defined in Equation (10) into

a deterministic time-of-day component θ(ti) = γθ +
∑M

m=1
λθ
mdm,i and a component at-

tributable to duration shocks, δ ln νi. To ensure cross-sectional comparability, we divide
these statistics by the stock-specific average midquote across the sample P̄ . The trading
day is subdivided in ten-minute bins, and we compute bin averages across the trade events
in the stocks belonging to each of the four trading activity quartiles using the parameter
estimates in Table 3. The dotted line depicts the bin averages of δ ln νi/P̄ ; the dashed line
depicts the bin averages of θ(ti)/P̄ , and the solid line depicts the bin averages of θ(νi, ti)/P̄ .
Numbers are multiplied by 100 such they may be interpreted as percentages.
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Figure 3: Time between trades and MRR-ACD adverse selection component:
European sample. All trade events in the stocks belonging to the same trading activity
quartile are pooled. We then sort the observations by the size of the duration shock (in
ascending order) and group them into deciles, compute mean and 0.25, 0.75 and 0.9 quan-
tiles of the standardized MRR-ACD adverse selection component θ(νi, ti)/P̄ per decile, and
graphically display the results. Decile means are connected with solid lines. The dashed
lines connect the 0.25 quantiles, the dotted lines the 0.75 quantiles, and the dash-dotted
lines the 0.9 quantiles. The panels above display the results for each of the four trading
activity quartiles, with the first and last quartiles representing those for the groups of most
and least frequently traded stocks respectively.
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Figure 4: Time between trades and MRR-ACD adverse selection component:
Stock specific results. We sort the observations for each stock by the size of the trade du-
ration shock (in ascending order) and group them into deciles, compute mean and 0.25, 0.75
and 0.9 quantiles of the standardized MRR-ACD adverse selection component θ(νi, ti)/P̄
per decile, and graphically display the results. Decile means are connected with solid lines.
The dashed lines connect the 0.25 quantiles, the dotted lines the 0.75 quantiles, and the
dash-dotted lines the 0.9 quantiles. Each of the four panels above displays the results for a
representative stock from one of the four trade activity quartiles respectively: (1) Daimler
Chrysler (DCX); (2) BASF (BAS); (3) Lufthansa (LHA) and (4) Fresenius MedCare (FME).
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