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1 Introduction

In a manner unexpected only a few years ago, the global financial crisis which
started in 2007 has demonstrated that a system of interconnected financial
institutions may be subject to a systemic breakdown, with large effects on the
real economy. In this paper a numerical model is used to analyze a network
of financial institutions subject to capital requirements. The model allows
to replicate important stylized facts of systemic risk which emerged during
the recent financial crisis. We then introduce the concept of a Systemic
Value at Risk (SVaR) which allows to simultaneously determine both, a
fair risk charge as well as the optimal macro-prudential capital endowment,
for financial institutions in the system. Among other things we find that
there is not necessarily a correspondence between a bank’s' contribution to
systemic risk — which determines its risk charge — and the optimal capital
injection which would render the financial system more resilient with respect
to systemic risk.

As there are many different sources of systemic risk, and also different
potential consequences for the real economy, there is not a single definition
of systemic risk.? An early definition of systemic risk was given in Group
of Ten: “Systemic financial risk is the risk that an event will trigger a loss
of economic value or confidence in, and attendant increases is uncertainly
about, a substantial portion of the financial system that is serious enough
to quite probably have significant adverse effects on the real economy. Sys-
temic risk events can be sudden and unexpected, or the likelihood of their
occurrence can build up through time in the absence of appropriate policy
responses. The adverse real economic effects from systemic problems are gen-
erally seen arising from disruptions to the payment system, to credit flows,
and from the destruction of asset values.”® Lo (2009) proposes analyzing
a set of risk measures to capture systemic risk in the entire financial sys-
tem. These risk measures capture the six dimensions ‘leverage’, ‘liquidity’,
‘correlation’, ‘concentration’, ‘sensitivities’, and ‘connectedness’. The IMF
defines systemic risk as “large losses to other financial institutions induced
by the failure of a particular institution due to its interconnectedness™ and
the Financial Stability Board, International Monetary Fund, and Bank for
International Settlements describe systemic risk in a report to the G-20 as “a

In the following the terms ‘banks’ and ‘“financial institutions’ will be used interchange-
ably.

2See paper 2 of International Monetary Fund (2009) for a comprehensive discussion of
different definitions of systemic risk.

3Group of Ten (2001), p. 126.

“Chapter 2 of International Monetary Fund (2010), p. 2.



risk of disruption to financial services that is (i) caused by an impairment of
all or parts of the financial system and (ii) has the potential to have serious
negative consequences for the real economy”.> Following closely the latter
definition, in this paper we define systemic risk as the danger that failures
within the financial system will mean that an adequate supply of credit and
financial services to the economy is no longer guaranteed, so that negative
real effects will follow.

A main driver of the recent financial crisis was the state of the finan-
cial system.® Large financial institutions tended to be highly leveraged,
while their portfolio structures were relatively homogeneous, and returns
were highly correlated.” There were also close ties to the so-called shadow
banking sector, obscuring balance sheets and rendering the financial system
fragile. In the course of the crisis numerous institutions had to be bailed
out because their insolvency would have put the financial system at risk via
triggering a cascade of other financial institutions’ defaults. The increase in
systemic risk was essentially driven by three factors, the size of the financial
institutions, the direct links among these institutions, as well as the indirect,
asset market-driven links.

First of all, the default of a financial institution which is relatively large
can put the financial system at risk. For example, in line with our definition
of systemic risk, one can expect that the insolvency of even a single large bank
constitutes a serious threat to the financial system and the real economy of
the entire country. Switzerland is a good example, as its two global banks,
UBS and Credit Suisse, pose a significant risk for the country’s financial
system and the wider economy because of their mere size. This is why banks
like UBS or CS were called ‘too-big-to-fail” in the recent financial crisis.

Second, banks that are highly interlinked with other financial institutions
can also threaten the financial system through their network of exposures to
other banks, domestically and abroad. If such a bank defaults on its liabilities
it can directly induce losses on its creditor banks which on their part might
spread the shock further in case they also default. For example, during the
recent financial crisis, the insurance company American International group
(AIG) was bailed out because of its interlinkages, via CDS (Credit Default

5Financial Stability Board, International Monetary Fund, and Bank for International
Settlements (2009), p. 2.

5For a general overview on the causes and consequences of the recent financial crisis
see, inter alia, Issing, Asmussen, Krahnen, Regling, Weidmann, and White (2009), Borio
(2008), Brunnermeier (2009), and Gorton (2010a).

"For an analysis of the role of the shadow banking system in the recent financial
crisis see Gorton (2010b) who compares the breakdown of the shadow banking system to
historical bank runs.



Swap) counterpart exposures, with several other large financial institutions.
A default of AIG would thus have exposed a large part of the financial system
to significant expected losses.

Third, indirect connections between financial institutions, too, may ren-
der the financial system vulnerable. If banks invest in identical or corre-
lated financial products, their balance sheets become more highly correlated.
Furthermore, losses may induce banks to deleverage via the liquidation of
assets on the market, eventually resulting in a decline of prices for these as-
sets. Other banks that have invested into the same or into correlated assets
will thus also face losses when marking their assets to market. Accordingly,
these banks are induced to sell assets on the market which will likely fur-
ther depress prices, eventually forcing other banks to engage in deleverag-
ing tmemnselves. Ultimately this cascade creates firesales® and indirectly
transmits shocks across financial institutions with correlated balance sheets.
Shocks can thus spread directly and indirectly through the financial system.
Institutions that threaten the financial system through a contagious casacade
of defaults because of their interconnectedness with the financial system were
labelled ‘too-interconnected-to-fail’ during the recent financial crisis.

Figure 1 gives an outline of how balance sheets of financial institutions
are interconnected. Solid lines depict direct interconnections while dashed
lines depict indirect interconnections. The direction of the arrows indicates
exposure towards another bank. For example, the arrow from the interbank
lendings of bank 2 to the interbank borrowings of bank 1 represents counter-
party exposure of bank 2 towards bank 1.

On the stylized balance sheet from Figure 1 banks’ assets consist of lig-
uid and non-liquid assets as well as interbank lendings. Liquid assets are,
for example, cash and cash equivalents. Non-liquid assets are, for example,
Collateralized Debt Obligations (CDO) and need to be marked to market if
they are held in a bank’s trading book. Interbank lendings are, for example,
credits given to other financial institutions. Distinguishing between liquid
and illiquid assets is important because one of the main drivers of systemic
risk during the recent financial crisis consisted of banks which were cut off
from liquidity on the interbank markets and thus had to sell illiquid assets,
resulting in self-energizing firesales. Banks’ liabilities consist of deposits, in-
terbank borrowings, and equity. Below the stylized balance sheets on Figure
1 in dashed lines are conditional assets and liabilities, for example CDS.

To mitigate the risk of future financial meltdowns it has become con-
sensus that, in addition to microprudential supervision, supervisors need

8See Gorton and Metrick (2009) and Gorton (2009) for a detailed analysis of how
firesales have affected secondary asset markets during the current financial crisis.



Bank 1

Assets Liabilities
Liquid Assets Deposits
___________________ ,| Non-Liquid Interbank
: Assets Borrowings
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i | Bought CDS | Issued CDS
i Bank 2
i Assets | Liabilities
Liquid Assets Deposits
S ,| Non-Liquid Interbank
Assets Borrowings
Interbank ;
Equit
Lendings quity
| Bought CDS | Issued CDS i+

Figure 1: Interconnections Between Financial Institutions

to set up an additional layer of macroprudential regulation and supervi-
sion which shall allow to identify system-wide risk drivers, monitor systemic
risk, and react adequately to it. Systemic risk is a negative externality of
financial institutions on the financial system. Without charging them for
this negative externality, financial institutions are perversely incentivized to
increase their contribution to systemic risk via becoming too-big-to-fail or
too-interconnected-to-fail because it allows them to take advantage from re-
sulting cheap refinancing opportunities.

To analyze systemic risk and banks’ contributions to it, we develop a
network of interrelated bank balance sheets with endogeneous asset markets.
Our model reproduces the main stylized facts with regards to systemic risk
that emerged during the recent financial crisis. We then introduce the con-
cept of SVaR in which a Pigouvian tax is used to capitalize a systemic risk



fund. The capital from the systemic risk fund is re-injected into the finan-
cial system to make it more resilient to systemic risk. The optimal amount
of capital for the systemic risk fund as well as the necessary proportions of
capital injected into financial institutions are determined with a parallelized
simulated annealing approach.

Our analysis provides evidence that there is not neccessarily a correspon-
dence between a bank’s contribution to systemic risk — which determines its
risk charge — and the capital that is injected into it to make the financial
system more resilient to systemic risk. In addition, the analysis provides
evidence that a systemic risk fund which is immediately re-injected into the
financial system requires less capital than a systemic risk fund which stores
the capital in a central depository and is used to bail out banks ex-post.

The remainder of the paper is organized as follows: Section 2 gives an
overview on the previous literature. Section 3 outlines our model, and Sec-
tion 4 shows how it can be used to analyze systemic risk as well as individual
institutions’ contribution to systemic risk along various parameters. Using
the outlined model, Section 5 develops and analyzes a proposed systemic risk
charge and fund subject to our SVaR concept within a systemic risk man-
agement approach. Section 6 concludes. Further details regarding different
model structures analyzed as well as the parallelized simulated annealing al-
gorithm employed for analysis are described in several appendices at the end
of the paper.



2 Review of Previous Literature

To get a general overview on systemic risk, Haldane (2009) considers the fi-
nancial network as a complex and adaptive system and applies several lessons
from other disciplines such as ecology, epidemiology, biology, and engineering
to gain insights to systemic risk in the financial system. More specifically and
regarding the various approaches to assessing systemic risk it is sensible to
distinguish between (i) ‘market-based’ and (ii) ‘network-based’ approaches.’
While the former use correlations and default probabilities that can be ex-
tracted from market prices of financial instruments, the latter explicitely
model linkages between financial institutions, mostly using balance sheet in-
formation.

As regards the market-based literature, Lehar (2005) uses standard tools
which regulators require banks to use for their internal risk management
— however at the level of the entire bank system — and shows that in a
sample of international banks over the period from 1988 to 2002 the North
American banking system increased its stability while the Japanese banking
sector has become more fragile. Bartram, Brown, and Hund (2007) develop
three distinct methods to quantify the risk of systemic failures in the global
banking system. Using a sample of 334 international banks during 6 finan-
cial crises the authors come to the conclusion that the existing institutional
framework could be regarded as adequate to handle major macroeconomic
events. Béardsen, Lindquist, and Tsomocos (2006) evaluate the usefulness
of macroeconomic models for policy analysis from a financial stability per-
spective. They find that a suite of models is needed to evaluate risk factors
because financial stability depends on a wide range of factors.

To measure systemic risk, more recent research from the market-based
literature focuses mainly on detecting systemic risk in groups of financial
institutions, in particular using multivariate measures such as tail risk indi-
cators or multivariate distress dependences.!® For example, Gray and Jobst
(2010) find that using equity option information to calculate (joint) tail risk
indicators between institutions yields timely information about the extent
of systemic risk. Segoviano and Goodhart (2009) compute the multivariate
density of a portfolio of banks to capture linear and non-linear distress de-
pendences and apply their methodology to a number of country and regional
examples. Among other findings they show that U.S. banks are highly in-
terconnected, and that distress dependence rises in times of crises. Finally,
Adrian and Brunnermeier (2009) propose CoVaR, defined as the value at risk

9See the background paper of Financial Stability Board, International Monetary Fund,
and Bank for International Settlements (2009) for a similar distinction.
10See Chapter Three of International Monetary Fund (2009) for a similar subsumption.
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of financial institutions conditional on other institutions being in distress to
assess systemic risk in the financial system. Using this measure, the authors
quantify the extent to which financial key figures such as the leverage ratio
and maturity mismatch can predict systemic risk.

As regards the network-based literature, Upper and Worms (2004) use
balance sheet information to analyze whether there is the risk of contagion
in the German interbank market and find that the failure of a single bank
can lead to a loss of up to 15% of the banking system’s assets. Cifuentes, Fer-
rucci, and Shin (2005) integrate a mechanism of marking to market assets in
a network model and show that liquidity requirements can serve as an effec-
tive means to forestall contagious defaults in the financial system. Elsinger,
Lehar, and Summer (2006) use standard tools from risk management in com-
bination with a network model of interbank loans. Applying their methodol-
ogy to a dataset of all Austrian banks they provide evidence that correlations
in banks’ asset portfolios are a main source of systemic risk. Mueller (2006)
employs a data set of bilateral bank exposures and credit lines in a network
model and finds a substantial potential for contagion in the Swiss interbank
market. Aikman, Alessandri, Eklund, Gai, Kapadia, Martin, Mora, Sterne,
and Willison (2009) combine a network model of the financial system with
funding liquidity risk and incorporate this to a suite of models that allow to
model various aspects of systemic risk. The authors provide evidence that
large losses at some banks can be exacerbated by liquidity feedbacks and
thus can lead to system-wide instability.

Castaglionesi and Navarro (2007) study the endogeneous formation of
financial networks and show that an efficient financial network and a decen-
tralized financial network both display a core-periphery structure in which
core banks are all connected among themselves and choose to hold a safe
asset while periphery banks can eventually be connected to other banks and
choose to hold a risky asset. Gai and Kapadia (2010) develop a network
framework where asset prices are allowed to interact with balance sheets.
The authors find that greater connectivity in financial systems reduces the
likelihood of widespread default in case of relatively small shocks, while the
impact on the financial system in case of large shocks increases this likelihood.
Espinosa-Vega and Solé (2010) show how a cross-border network analysis can
be used to efficiently monitor direct and indirect systemic linkages between
countries, in particular in the face of different credit and funding shocks. The
authors provide evidence that the inclusion of risk transfers can modify the
risk profile of entire financial systems.

The recent financial crisis has revealed that individual financial institu-
tions impact differently on systemic risk. There are particularly two reasons
why it is important to assess financial institutions’ individual contribution to



systemic risk. First of all, to prevent the insecurity surrounding potential de-
faults such as the Lehmann bankruptcy in 2008, a supervisor should be able
to assess the impact of individual institutions’ defaults on the stability of the
financial system. Second, as already outlined in the previous section, individ-
ual financial institutions should be charged to incentivize them to internalize
the cost of their negative externality on the financial system. Tarashev, Bo-
rio, and Tsatsaronis (2009) use the Shapley value methodology to identify
the contribution of individual financial institutions to systemic risk. The
authors show that none of the drivers of contribution to systemic risk, such
as the institution’s size or its probability of default, in isolation provide a
fully satisfactory proxy for systemic importance. Following the authors, it is
thus important to carefully take into consideration the interactions between
the various risk factors when analyzing systemic risk and the individual in-
stitutions’ contribution to it. Gauthier, Lehar, and Souissi (2010) compare
alternative mechanisms for allocating the overall risk of a banking system to
its member banks. Using a data set of the Canadian banking system the au-
thors find that capital allocations that are optimal with respect to systemic
risk can differ by up to 50% from actually observed capital levels. Similarly
to Tarashev, Borio, and Tsatsaronis (2009) these allocations are not trivially
related to different risk factors.

The following section outlines the network model that will be used for
our analysis.



3 Model of an Interrelated Financial Network

The model which is set up in this section captures important features of
the financial system and replicates several stylized facts encountered during
the recent financial crisis. It consists of (i) a system of three interconnected
financial institutions that adjust their portfolio to fulfill a capital requirement
and (ii) the Rest of the World (ROW). Banks have deposits, lend to each
other, and hold liquid assets (LA) and non-liquid assets (NLA) on their
balance sheet. Non-liquid assets are marked to market!! while liquid assets
do not change their value on banks’ balance sheets. The financial system is
mapped into a matrix of assets and liabilities as displayed on Figure 2.

Assets
ROW
Bank 1 Bank 2 Bank 3
NLA LA
Bank 1 X Y
[0}
£ Bank 2 w
E
o
-
Bank 3
ROW Z

Figure 2: Matrix of the Financial System Model

Figure 2 summarizes bank balance sheets and their interconnections in a
matrix from. The second row, for example, displays bank 1’s assets, while
its liabilities are captured in the second column. Item "W’ in matrix entry
3/3 represents bank 2’s interbank lending to bank 1. W is an asset for bank
2, and a liability for bank 1. Item ’X’ represents bank 1’s holdings of non-
liquid claims on the set of the world like, for example, collateralized debt
obligations or corporate loans. Similarly, item 'Y’ in matrix entry 2/6 refers
to bank1’s holdings of liquid assets, i.e. cash and trading book assets. Item
'Z’, finally, entails bank 1’s deposits and outstanding bonds, held by the rest
of the world.

'Note that there is no distinction between banking and trading book in the model, all
non-liquid assets are marked to market in the model.
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Banks have to fulfill a minimum capital requirement, ~, which is defined
for bank i according to equation 1,

Zjaj+p-bi+ci—zjlj—di
Zjaj—i—p-bi

v = , (1)
where i,j € (1,2,3),i # j, are indices for the three banks in the system, b;
are non-liquid assets, ¢; are liquid assets, a; are interbank lendings, [; are
interbank borrowings, p is the market price of the non-liquid asset, and d;
are deposits. Note that the liquid asset does not show up in the denominator
of Equation 1 because banks do not have to hold capital for their liquid asset
holdings.'? If a bank’s equity ratio is lower than the capital requirement,
7, it tries to net its interbank exposure and, if that is not sufficient to ade-
quately recapitalize, sells non-liquid assets on the market. In both cases the
denominator in Equation 1 decreases relative to the numerator. If a bank
cannot meet the capital requirement, it defaults.

Equation 2 shows the capital ratio after netting its exposures against
other banks by 6 units.

i (Z]aj—e)—i—pbz
Netting reduces the denominator by 6 units while the numerator remains
unchanged. Note that in the model, banks may net any cross-exposure as
long as their balance sheet equity value remains non-negative, that is > ja;+
p-b;+c; — Zj l; —d; > 0.!3 The term cross-exposure means that two banks
have borrowed from and lent to each other. Note that a bank which has cross-
exposure with another bank can have net-exposure with the same bank. Here
and in the following net-exposure is defined as one bank having lent more to

another bank than borrowed from the same bank.
Solving Equation 2 for the amount of bank ¢’s desired netting yields Equa-

ton 3 1= bt o= Y0 — d)
R TR

where 1 is an indicator function and nwv; is bank i’s net-value defined as
>.;ja;+p-bi+ci—3 ;l;—d;. The amount of netting the j’th bank is willing
to accept with bank ¢ is given by Equation 4

(9; = l[mjzo]mm(al, ll) (4)

12Gee Cifuentes, Ferrucci, and Shin (2005) for a similar set up.
13Tf a bank’s liabilities exceed its assets, it is taken into custody by the supervisor to
protect creditors. In this case no netting is possible.

11



Note that the minimum operator is used since only cross-exposures can be
netted. The resulting amount netted between bank ¢ and bank j is given by
Equation 5
0 = min(05,65). (5)

Note that in the model banks never increase their lending to each other.

Furthermore, in order to meet the minimum capital requirement, the bank
may engage in asset sales. Equation 6 shows the capital ratio bank 7 expects
to obtain if it engages in selling s; units of its non-liquid assets.

. Zjaj—I—p(bi—si)+c,-+p-si—zjlj—di
e >, 45+ ol — ) o
g %I 7 i

Consider the indirect effects of the above responses to violations of Equa-
tion 1. Netting by bank ¢ increases ~ for banks ¢ and j, where bank j is
holding the cross exposure. Asset sales by bank ¢, in contrast, have further
repercussions on all banks with positive exposure'* in that very asset, be-
cause asset sales have an impact on its secondary market price. In the model
it is assumed that market prices of non-liquid assets, p, are a function of
supply and demand on the market. If banks engage in liquidating (part of)
their non-liquid assets, several effects on banks’ balance sheets have to be
considered: the seller obtains cash, a liquid asset, and hence improves her
capital ratio. However, at the same time an increased supply of non-liquid
assets to the market decreases the market price of the asset, lowering the
market value of the bank’s remaining portfolio holdings of the same asset.
Furthermore, the price effect also influences other banks’ balance sheets since
the market value of their non-liquid assets is reduced as well.

In the model, the market price of the non-liquid asset is found via a taton-
nement process between supply and demand. Following Cifuentes, Ferrucci,
and Shin (2005), the inverse demand function is assumed to follow Equation
7

p=eap(—€ 5) M

where £ is a positive constant to scale the price responsiveness with re-
spect to non-liquid assets sold, and s; is the amount of bank i’s non-liquid
assets sold in the market.

Solving Equation 6 for the amount of non-liquid assets sold by bank i to
fulfill the capital requirement, and noting that a bank can only sell non-liquid

14We restrict b; to be non-negative, assuming that bank asset holdings refer to cash flow
streams outside the financial sector. Put differently, bonds issued by banks are included
in lJ

12



assets it holds in positive quantities'®, leads to Equation 8. Tt shows bank i’s
supply of non-liquid assets on the market as a function of the market price.

(1—7)(P'bi+zaz‘)—CH'erl—dz)

(8)

S; = min (bz, _
P

Since each s; is decreasing in p, the aggregate sales function, S(p), is also
decreasing in p. The tatonnement-process leading to the equilibrium market
price is depicted in Figure 3.

s(p(s(1))™)
s (1) -

0 p* p(s(1)  p(s(1)m 1
p(s(1))orer

Figure 3: Tatonnement Process in the Model

Prior to any shock, the market price equals 1, which is the initial price
when all banks fulfill their respective capital requirements, and sales of the
non-liquid asset are zero. A shock to bank ¢, say a certain loss of cash,
¢;, shifts the supply curve upwards, resulting in S(1) = s; > 0 because

>Note that banks do not engage in buying or short-selling non-liquid assets in the
model.
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bank i starts selling non-liquid assets to fulfill its capital ratio. However,
for S(1) the bid price equals only p(S(1))¥, while the offer price is one.
The resulting market price is p(S(1))™, the midprice between bid and offer
prices. Since the market price thus decreases and banks have to mark their
non-liquid assets to market, additional non-liquid asset sales may be needed
to fulfill the capital requirement. The stepwise adjustment process continues
the demand and the supply curves intersect at p*. Note that the supply curve
may become horizontal from some value of non-liquid assets sold onwards, as
the total amount of non-liquid assets on the banks’ balance sheets is limited.
Since a shock to a bank will always result in an upward shift of the supply
curve, and the maximum price of the non-liquid asset being equal to 1, while
the initial equilibrium prior to the shock equals zero, a market price p € (0, 1)
always exists.

In the framework just outlined, there are two main shock transmission
channels, the direct connection between banks via interbank holdings (credit
risk), and indirect connections via marking to market of non-liquid assets on
the balance sheet (market risk).

The following sub-section explains how different configurations of a finan-
cial network can be captured in the model.

3.1 Generating Specific Realizations of the Financial
System Matrix

Any specific set up of a financial system is described by a consistent matrix,
that is, when all banks fulfill their capital requirement ratio, with concrete
values for all assets and liabilities, as depicted in figure 2. Accordingly, a
setup is defined by (i) the structure of the system, that is, the network of
exposures and cross-exposures among banks and the rest of the world; (ii)
the banks’ individual ratio of interbank lending to other assets (that is, her
non-liquid and liquid asset holdings), «, with a the overall amount lent to
other banks, and 1 — o the amount invested in other assets; (iii) the ratio of
investment in non-liquid to liquid assets, 3, where 3 is the fraction invested
in non-liquid assets and 1 — 3 is the fraction invested in liquid assets; (iv)
the capital requirement, v; and (v) an initial endowment of capital, A, that
is allocated to banks’ assets according to « and 3. Note that 0 < a < 1 and
0<p<L

To determine all except the last row of the financial system matrix in
Figure 2, the structure of interlinkages, i.e. the net of exposures has to be
defined, and concrete values for a, 3, A, and v have to be assigned. In the
model, it is assumed that banks invest all their borrowed funds into liquid

14



and non-liquid assets. The overall amounts bank ¢ holds in non-liquid and
liquid assets are ((1 —a)- A+ > ;)8 and (1 —a) - A+ 1)1 = B),
respectively. The entry for the ¢’th bank in the last row of the financial
system matrix, that is, its deposits, is residual in the sense that the capital
requirement is just met, using Equation 9

di =A-a+ ((1—@)-A+le> [6p+1—6]—2lj

(9)
A-a+(1—a)A-B-p+le-ﬁ~p].

-

As an example, Figure 4 illustrates the symmetric case. All banks have
identical initial capital, A, they borrow from and lend to each other, and
they have identical portfolio allocations, o and /.

ROW
Bank 1 Bank 2 Bank 3
NLA LA
Bank 1 Aa/2 Aa/2 ABp A(1-B)
Bank 2 Aa/2 Aa/2 ABp A(1-B)
Bank 3 Aa/2 Aa/2 ABp A(1-B)
ROW d d d

Figure 4: Symmetric Case of the Financial System Matrix

In the example on Figure 4 each bank’s balance sheet then looks as dis-
played on Table 1.

Note that with different interlinkage structures the relative size of banks
vis-a-vis each other, measured by the sum of their assets, changes because
banks choose their leverage independently, and are free to select their desired
balance sheets.

The next sub-section outlines how shocks to the financial system matrix
are modeled.
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‘ Assets ‘ Liabilities ‘

LA: A(1 - p) Deposits: A(B(p — 1) —y(a+ Bp) + 1)
NLA: ApBp Interbank borrowings: Aa

Interbank lendings: A« Equity: A(y(a+ Bp))

L =Al+Bp-D+1) [Y=Ale+Bp-1)+1)

Table 1: Banks’ Balance Sheets in the Symmetric Case

3.2 Shocks in the Financial System Matrix and the Mea-
sure for Systemic Risk

As explained in the beginning, systemic risk is defined as the hazard of bank
failures causing a decrease in the supply of credit and financial services to
the economy which, resulting in negative real effects. Accordingly, we define
systemic risk conditional on a shock as the relative size of the financial system
that breaks down. It is measured by the banks’ balance sheet size, that is, the
sum of their assets. Intuitively, when banks default, the resulting liquidation
costs as well as the the banks’ overall importance to the real economy will
be closely related to the size of its balance sheet.

Shocks in the model come in the form of percentage loss in asset val-
ues. The resulting systemic risk is calculated as the ratio of assets from
defaulting banks to system-wide asset total, both measured prior to the
shock. For example, if subsequent to a shock only bank 1 defaults, while

all other banks in the financial system remain solvent, then systemic risk is
Sum of Bank 1’s Assets Prior to the Shock
Sum of all Banks’ Assets Prior to the Shock *

A wide range of possible shock events, from mild to severe, are considered
in the simulations. Strongly adverse scenarios with high unexpected losses
will be included among these scenarios, as such shocks are likely candidates
to trigger systemic risk events, involving defaults of parts of the financial
system. The expected systemic risk in a particular point in time is calculated
as the weighted sum of systemic risk events caused by a distribution of shock
realizations. The weights are derived from the probability distribution of
shock realizations. Equation (10) defines this measure of expected systemic
risk.

oF — Z Sum of Insolvent Baflk7S Assets.Prior to Shock; prob;  (10)

Sum of all Banks’ Assets Prior to Shock;
where ®F is expected systemic risk and prob; is the probability assigned to
shock scenario j. Defining systemic risk this way, i.e. assuming a distribution
of shock realizations for each bank, allows to identify the contribution of
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individual banks to overall systemic risk. At the same time, it allows to
handle the three main risk-channels of interbank risk in a unified framework,
namely bank size, bank interconnectedness, and bank asset fire sales. As
it turns out, given the parametrization chosen in our model, the fire sale
channel is particularly sensitive to systemic risk, since even small shocks
have a significant effect on financial system default rates. The interlinkage
channel, on the other hand, requires a relatively large shock to generate a
system-wide default. Our modeling strategy allows to adopt the Value at Risk
(VaR) metros,'® the standard risk management tool used in microprudential
supervision, for a macroprudential problem. The resulting metric, the System
Value-at-Risk (SVaR), is effectively a set of stress tests for an entire banking
system. This metric, expected systemic risk, will be used subsequently to
analyze systemic risk in the financial system.

Each possible shock to the banking system is modeled as a vector of per-
centage losses to a bank’s (non-weighted) sum of assets over a discrete grid,
¢, ranging from 1% to <%, with ¢ being the highest conceivable shock. Con-
sidering all combinations of shocks for the three banks yields a total number
of ? shock vectors. Each shock vector consists of n elements, i.e. the loss
associated with the shock for each institution our model with n banks. In
this paper,n=3. The probability of a shock realization is captured by a multi-
variate normal distribution centered at a value between 1 and ¢. The extent
of correlation between the shocks is modeled with the variance-covariance
matrix of the multivariate normal density function. The correlation between
shocks in a given scenario, say a shock to banks 1 and 2 in scenario 1, is then
calculated as C:'U;’;, where cov; o designates the covariance between shocks 1
and 2 and oy and oy are the standard deviations of shocks to banks 1 and
2, respectively.!” Since shocks only range from 1 to ¢, the multivariate nor-
mal density is rescaled such that the integral of the volume described by the
discrete grid of shocks, ranging from 1 to ¢ in all three dimensions equals 1.

As previously outlined, if subsequent to a shock realization, the bank
cannot fulfill its capital requirement, it will net its counterparty exposures
first. Next, if netting is not enough to meet the capital constraint, the bank
will sell non-liquid assets, thereby indirectly transmitting the shock to other
banks, via a downward pressure on the market prices of non-liquid assets. If
it still cannot fulfill the capital requirement,the bank will go into defaults.
In default, seniority of deposits over other liabilities is respected.

The clearing algorithm for shock transmission is an iterative process in

16See Jorion (2006) for an outline of the VaR methodology.

17 Apart from the firesale channel for non-liquid assets, the correlation between direct
shocks to different banks captures an additional element of common bank exposure within
the financial system.
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which banks sequentially absorb the shock. Banks initially try to fulfill their
capital requirement via netting counterparty exposures, and, after that stage,
via selling non-liquid assets into the market. Banks with negative net-value,
i.e. negative equity then transmit a shock to their creditors, and the iterative
process restarts. The process ends when shocks to solvent banks are fully
absorbed. Figure 5 depicts the procedure of modeling the shock transmission.

A) Assign initial shock

I
v

B) Banks net to fulfill
capital requirement

C) Banks sell non-
E) Assign shock in the liquid assets
financial system matrix to fulfill capital
requirement

D) Identify bankrupt
banks and update

shock to interbank
lendings

|
v

F) Exit after shocks to
solvent banks are fully
assigned

Figure 5: Shock Transmission in the Financial System Model

Banks’ assets are contracted by the initial shock (step A on Figure 5).
Banks that do not fulfill the capital requirement first try to improve their
capital ratio through netting interbank liabilities with other banks, since
netting has no negative repercussions on the balance sheet (step B on Figure
5). Next, banks that still do not fulfill the capital requirement start selling
non-liquid assets in the market (step C on Figure 5).

Banks that are not able to fulfill the capital requirement even after selling
all their non-liquid assets, will enter into default. If insolvent banks have
negative net-value they will transmit shocks to their creditors, that is, banks
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that have exposure with them, or ultimately to the bank’s depositors. A
bank with negative net-value transmits shocks to its creditors, respecting
seniority, until it has a net-value of zero. The overall shock prepared for
transmission to the insolvent banks’ creditors equals the absolute value of
their negative net-value and is assigned proportionally to a bankrupt’s bank
interbank liabilities as long as they are positive (step D on Figure 5).

In case the interbank liability shock matrix contains nonzero entries it is
assigned (step E on Figure 5), and the iteration restarts (step A on Figure 5).
If the interbank liability shock matrix is empty the shock has been assigned,
and the resulting systemic risk is computed (step F on Figure 5).

The following sub-section outlines how the model can be used to analyze
individual financial institutions’ contribution to expected systemic risk.

3.3 Analyzing Banks’ Contribution to Expected Sys-
temic Risk

To identify the contribution of an individual bank to expected systemic risk,
the Shapley value methodology can be employed.!® In game theory this
value is used to find the fair allocation of gains obtained by cooperation

among players. For a game consisting of three players the Shapley value is
defined as

sy= 3 WD B G-y,

n!
K3i;KCN

where £ is the number of players in coalition K, N is the set of all players,
v(K) is the value obtained by coalition K including player i and v(K — {i})
is the value of coalition K without player i. The Shapley value for player ¢
is the average contribution to the gain of the coalition over all permutations
in which players can form a coalition.

The analogy between gains allocation in game theory and systemic risk
contribution in financial economics is evident, as individual banks through
their portolio structures and their interconnections to other banks and to the
rest of the world may increase or decrease the likelihood of a given financial

18Gee Shapley (1953). Tarashev, Borio, and Tsatsaronis (2009) also rely on the Shapley
value to compute individual financial institutions’ contribution to systemic risk. Note that
in general also other measures for financial institutions’ contribution to systemic risk could
be employed, for example the CoVaR methodology developed by Adrian and Brunnermeier
(2009). However, for a simulation based approach to systemic bank risk, the Shapley value
methodology is suited particularly well, as different patterns of interbank dependencies,
i.e. via portfolio structures and via interbank lending and borrowing, can be accounted for.
The CoVaR methodology, in comparison, relies on reduced form representation instead.
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system experience multiple bank defaults. In this sense, a bank’s contribution
to overall system risk can a priori be positive or negative. Furthermore, the
marginal effect of a bank on overall systemic risk cannot be estimated from
bank-individual data alone; the interplay with other banks’ balance sheets
and their portfolio compositions is needed to assess the bank’s impact on
system stability.

The Shapley value has a number of well-known properties:

e Pareto efficiency: The total gain of a coalition is distributed;

e Symmetry: Players with equivalent marginal contributions obtain the
same Shapley value;

e Additivity: If one coalition can be split into two sub-coalitions then
the pay-off of each player in the composite game is equal to the sum of
the sub-coalition games;

e Zero player: A player that has no marginal contribution to any coalition
has a Shapley value of zero.

Of course, expected systemic risk is a cost to the financial network. There-
fore, the Shapley value can be employed to to compute the marginal contri-
bution of any single bank to the overall cost of systemic risk.

From the financial network matrix, the contribution of each single bank
to systemic risk is determined in Equation 11, given a shock of a particular
magnitude. As outlined before, systemic risk conditional on the realization
of a shock is defined as the proportion of the assets of all banks that enter
default because of a system wide asset shock, where pre-shock asset values
are used to define the proportions. v(K) is the coalition K of ‘all banks
that can default and transmit shocks’ and hence contribute to the measure
for expected systemic risk, and v(K — {i}) is the coalition K without the
7’th bank. Intuitively, the latter can be imagined as the situation in which
bank ¢ cannot default and thus not transmit shocks to the financial system.
In the model this is done via temporarily adding a large amount of liquid
assets to a bank that shall not transmit shocks. Such a ’safe’ bank does not
try to net counterparty exposure!® or sell non-liquid assets on the markets
because it always fulfills the capital requirement. Following this approach,
one calculates for each permutation of banks the systemic risk if only the first
bank in the order can default, next the marginal contribution to systemic risk
if the following bank can also default, and finally the marginal contribution to

19Though it accepts netting requests from other banks.
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systemic risk if all three banks in the actual order can default. The Shapley
value for a bank is then the average of its marginal contributions over all
possible permutations. Since systemic risk is defined as a proportion here,
its value and the Shapley values are restricted to lie between 0 and 1.

Similar to calculating expected systemic risk as a weighted sum of sys-
temic risk from a set of scenarios, Equation (12) outlines bank ¢’s contribution
to expected systemic risk from a weighted sum of its Shapley values.

where ¢;; is bank ¢’s contribution to systemic risk in scenario j and prob; is
the probability that scenario j realizes. Note that ®F = 377 ¢F.

Using the model just developed, the nest section analyzes the main de-
terminants of systemic risk.
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4 Applying the model: Systemic risk and its
determinants

In the model banks’ contribution to expected systemic risk is driven in partic-
ular by three characteristics, namely a bank’s size within the financial system,
as well as the extent of direct and indirect links among the banks.?Y First
of all, the size of an individual bank matters for its contribution to expected
systemic risk because our measure of systemic risk, total assets of defaulting
banks relative to system-wide assets, both measured prior to the shock real-
ization, increases with the size of the ’shocked’ bank’s balance sheets. Second,
banks that have borrowed from other banks are likely to contribute more to
expected systemic risk than banks inactive in interbank borrowing. Further-
more, a defaulting bank with outstanding interbank liabilities transmits a
shock to its creditor banks. Third, with significant amounts of non-liquid
assets on banks’ balance sheets, the financial system becomes vulnerable to
fire sales. Non-liquid assets on a bank’s balance sheet creates vulnerabilities
with respect to movements of asset prices. Furthermore, subsequent to a
loss, banks may be forced to sell non-liquid assets, thereby furthering the
downward spiral of asset prices and transmitting the shock to other banks in
the financial system. The following analyses will consider these three main
risk-channels in turn.

Expected systemic risk will first be explored in a baseline specification
of the model. Subsequent analyses will then investigate the impact of the
above risk-channels. To shed some light on the role of banks’ capitalization
and its role as a shock buffer, the effect of different capital requirement ratios
on expected systemic risk will also be investigated.

In the baseline specification parameters are set such that banks’ resulting
balance sheets roughly corresponds to the proportions actually found in a
real-word financial system. Concerning the relative importance of interbank
lending, Upper and Worms (2004) in their study on the German interbank
market report an average level of interbank lending of 2.96 times the amount
of their own capital. Scaling the parameter o to 0.3 in our model generates
approximately the aforementioned relative amount of interbank lending, as-
suming the bank engages in such lending at all. Furthermore, the proportion
of non-liquid assets to cash and cash equivalents at an international univer-
sal bank, as for example Deutsche Bank in 2009 was roughly 0.8.2! In the
model, we set 5 to 0.8, roughly mimicking the proportion found at an interna-

20Throughout the remainder of the paper we will refer to expected systemic risk caused
by direct and indirect interconnections as ‘interlinkage’ and ‘firesale’ channels, respectively.
21See Deutsche Bank AG (2010).
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tional bank. As regards banks’ capitalization, following the Basel Commitee
on Banking Supervision (2006), the capital requirement ratio, parameter ~,
is set to 8% of risk weighted assets, where we assume risk weights to be
uniformly one for non-liquid assets, and zero for liquid assets. The scaling
parameter for the price responsiveness of non-liquid assets, parameter &, is
set to 0.03 which results in a price decrease of approximately 7% of its mar-
ket price if banks sell all their non-liquid assets on the market. Banks in the
system are initially equipped with one unit of capital, parameter A. Since
systemic risk is measured as a proportion throughout the following exercises,
A is effectively a scaling parameter. It affects results only if banks were to
obtain different amounts of initial capital because only then banks’ relative
sizes will be affected.

To repeat, shocks that affect individual banks are modeled as a loss of
a bank’s assets ranging from 1% to 9% of its balance sheet sum in discrete
steps of 2%. Note that a shock always manifests itself via a loss in liquid
asset value.?? The multivariate normal shock distribution which determines
the shock scenario realizations is centered at a loss of 6% of banks’ assets.
The main diagonal of the variance-covariance matrix is set to 3, and the
covariances are set to yield a pairwise correlation coefficient of % between
shocks to all banks.?3

Note that the distribution of shock scenarios will likely influence the out-
comes of the following analyses. For example, choosing the parameters of the
distribution such that small shocks receive a relatively high likelihood will
generally reduce the expected risk contribution of the interlinkage channel.
This property of the mechanism is due to the fact that banks only transmit
shocks via the interlinkage channel if a shock is large enough to reduce the
sum of a bank’s assets below the sum of its liabilities, that is, its equity is
exhausted. Similarly, if very large shocks have a high probability, the size
channel dominates the outcome as regards banks’ contribution to expected
systemic risk. In the extreme case when all banks lose all equity from an
initial shock and cannot recapitalize, the whole banking system defaults. In

22A direct loss assigned to non-liquid assets might affect the firesales channel in the
model. A larger shock to an institution’s non-liquid assets can theoretically cause lower
risk in the financial system through a reduced volume of firesales. In the extreme case of
a bank losing all its non-liquid assets subsequent to a shock, its potential to transmit the
shock via the firesales channel has vanished.

23Concerning mean and variance of the shock distribution, there is little empirical
guidance as to how these parameters can be chosen. Moody’s Investor Service (2005)
estimates the asset correlations for major structural finance sectors to range between 2%
and 18%. Given that the recent financial crisis has demonstrated that correlations in the
financial sector can be even higher than was previously assumed, a value slightly above
the upper range of the interval has been chosen.
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this case, there is no room for contagion via firesales, or interlinkages. In this
respect, the variance and covariance of shocks matter as well. For example,
to identify banks which contribute to expected systemic risk via the interlink-
age channel it is necessary to model shock scenarios in which creditor banks
are subject to a relatively small shock. "Small’ implies it does not cause the
bank to default, even if, at the same time, its debtor banks are subject to
a relatively large shock which makes them default on their liabilities. thus
ultimately imposing some default risk on creditor banks. The distribution
parameters thus influence expected systemic risk directly as well as indirectly,
through banks’ systemic risk contributions, via different channels.

Our choice of parameters governing the distribution of shock scenarios has
been taken mainly with a view on generating shock scenarios which, on the
one hand, allow for the emergence of systemic risk through all risk-channels,
and, on the other hand, to identify through which of the channels banks
primarily contribute to expected systemic risk. It is important to note that
while the analyses are in some cases affected by distributional assumptions
and interactions between the risk-channels themselves, the insights obtained
from the outcomes of the experiments are qualitatively robust to changes in
these underlying parameters because they are always corroborated with a
view on the model’s underlying mechanics. Furthermore, in case the distri-
butional assumptions particularly matter, we will discuss the robustness of
the results in question.

Given that a bank can engage in borrowing and lending to and from other
banks simultaneously, there exist 2° possible banking structures, i.e. patterns
of interbank exposures. Appendix A, at the end of the paper,describes all
possible structures of the financial network matrix.

In the next section, the properties of a model of interconnected banking
with endogenous asset markets is explored using a baseline specification. The
role of different channels of risk contagion in the emergence of systemic risk is
analyzed. The discussion will be in terms of bank 1’s contribution to systemic
risk. This is without loss of generality since the interlinkage structures as seen
from banks 2 and 3 are symmetric, and it therefore suffices to report results
from the view of one bank only. For example, as can be seen in Appendix A,
structure 19 from the perspective of bank 1 is the same as structure 25 from
the perspective of bank 3.

Finally note that all following analyses will frequently refer to specific
structures of the financial system as well as to banks’ size, counterparty
exposure, and amount of non-liquid asset investment. Besides the general
structural overview given in Appendix A, a presentation of specific banking
network structures as well as their size distribution can be found in Appendix
B, along with banks’ relative size.
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The following sub-section analyzes expected systemic risk in the baseline
specification.

4.1 Expected Systemic Risk in the Baseline Specifica-
tion

Figure 6 displays expected systemic risk in the baseline specification of the
model. The upper panel shows the contribution of bank 1 to expected sys-
temic risk (y-axis). The possible interlinkage structures outlined in Appendix
A have been ordered from lowest to highest contribution to expected systemic
risk (x-axis).

In the baseline model, it is interlinkage structure 31 in which bank 1
contributes least to expected systemic risk (Table 13 in Appendix B). Looking
at the three main risk-channels, i.e. size, interlinkages, and firesales, suggests
why this is the case. First of all, in this network structure, bank 1 is relatively
small, holding merely 28% of total assets in the financial system. Second,
it has no direct connections to other banks. This prevents it from being
involved in shock transmissions via interbank lending. Third, in this network
structure, bank 1 holds the same amount of non-liquid assets as the other
two banks and thus is not particularly involved in the firesales channel either.
At the other end of the spectrum are network structure 12 and 64, in which
Bank 1 is the major contributor to expected systemic risk (Tables 7 and
16, respectively). Here, bank 1 holds 36% of financial system total assets.
It thus contributes more prominently to expected systemic risk via the size
channel. Furthermore, due to its interlinkages with other banks in both
network structures, it can directly issue or indirectly transmit a shock to its
creditor banks. Finally, in this network structure, bankl has a major amount
of non-liquid assets on its balance sheet, rendering participation in firesales
more likely.

As outlined at the beginning of this section, expected systemic risk and
bank 1’s contribution to it may depend on the distributional assumptions
of the shock scenarios. Note, for example, that in structure 16 (Table 8),
though bank 1 is the largest bank in the financial system (44%), two banks
have net-exposure to it, and it has the largest holdings of non-liquid assets,
it contributes slightly less to expected systemic risk than in structures 12 or
64. This result is due to the fact that shocks large enough to throw several
banks into default, as in network structure 16, are at the extreme end of the
shock distribution and thus receive relatively little weight in the calculation of
expected systemic risk (Equation (10)).In this particular scenario, Similarly,
bank 1’s contribution to overall systemic risk is limited (Equation (12)).
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In contrast, in network structures 12 or 64, an eventual loss from bank 1
is transferred forcefully to its single creditor, rendering a siginficant shock
transfer more likely, particularly for relatively smaller shocks with a higher
probability weight in the shock distribution.

The lower panel in Figure 6 displays expected systemic risk (y-axis) in
the financial system over the different possible interlinkage structures (x-
axis). The structures have been ordered by expected value of systemic risk.
In the baseline specification expected systemic risk is lowest in interlinkage
structure 32 (Table 14), where banks are not connected at all by interbank
lending, and are otherwise equal with respect to size, and non-liquid asset
holdings. Expected systemic risk peaks when network structures display
unidirectional links, as for example in structures 10 and 61 (Tables 6 and 15,
respectively). Note that in these structures, the arrows are ‘pointing’ into
the same direction, that is, from bank 1 via bank 2 to bank 3, and from
bank 3 back to bank 1, or vice versa, such that each bank can send shocks
via interbank linkages to all other banks in the financial system. In these
network structures with maximal risk, banks are akin with respect to size
and non-liquid asset holdings.

We now turn to the main risk-channels for the emergence of expected
systemic risk. The systemic risk contribution of individual banks will be
analyzed in the next sub-section. To isolate the effect of any particular chan-
nel, we will modify the simulations such that other channels are temporarily
(partially) shut down. Note that the size variations in our model do hinge
upon initial amounts of capital, A, as well as upon bank interconnectedness,
since bank borrowings increase the scale of their operations.

The next sub-section analyzes the effect of firesales on expected systemic
risk.

4.2 The Effect of Firesales on Expected Systemic Risk

The effect of the ‘firesales’ channel on expected systemic risk can be analyzed
if the ‘interlinkage’ channel is shut down and all banks start with the same
amount of initial assets. This can be done using structure 32 (Table 14),
where all banks have the same size with respect to the financial system and
do not lend to each other. The price responsiveness of the non-liquid asset,
parameter &, is increased from 0 to 0.05. If all non-liquid assets are sold on
the market, the percentage loss of the price of the non-liquid asset then ranges
from 0% to 11%, respectively. Figure 7 displays the effect of an increase in
the price responsiveness of the non-liquid asset (x-axis) on expected systemic
risk (y-axis) on the lower panel and bank 1’s contribution to it (y-axis) on the
upper panel, both in structure 32. Not surprisingly, the impact of the firesale
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Figure 6: Expected Systemic Risk in the Financial System Model’s Baseline
Specification

channel depends upon the price sensitivity of secondary asset markets to an
increase of sales. High price sensitivities translate into increased expected
systemic, while bank 1’s contribution rises as well. For parameter value of
0.05 and above, even small shocks to asset value may translate into the default
of the entire financial system.Because relatively small amounts of non-liquid
assets sold in order to recapitalize the balance sheet may lead to significant
price effects, triggering a firesale spiral.

Note that the functions displayed on Figure 7 do not follow a smooth
pattern because of the coarseness of the grid of shocks, featureing a stepsize
of 2% over a range of losses. For example, assume that given price respon-
siveness, a bank losing 5% of its assets is not able to recapitalize successfully,
and thus is forced to sell all its non-liquid assets on the market before default-
ing. If the price responsiveness is then ceteris paribus slightly increased, this
bank would start liquidating its assets earlier, say at a loss rate of 4% before
defaulting. However, since the next smaller shock considered is 3%, the price
responsiveness needs to be raised sizeably to increase expected systemic risk
and banks’ contribution to it over some ranges of the grid. The upshot is
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Figure 7: Effect of Firesales on Expected Systemic Risk in Financial System
Structure 32

that over some regions of the parameter space of £, a significant increase in
price elasticity is required to cause an offsetting increase in expected systemic
risk.

The simulation results presented in this section suggest the importance
to understand the price elasticity of non-liquid assets in order to estimate ex-
pected systemic risk properly. The same holds true for a bank’s contribution
to systemic risk.

The next section turns to the role of interbank lending in the emergence
of systemic risk.

4.3 The Effect of Interlinkages on Expected Systemic
Risk

As a first inspection of the effect of interlinkages on expected systemic risk,
Figure 8 displays a boxplot of expected systemic risk (lower panel) as well as
bank 1’s contribution to it (upper panel), for different number of interbank
links, according to the 64 possible financial network structures in the model.
Note that two banks are considered as being connected if there is a single link
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between them. To focus on the pure effect of interbank connectedness, we
have to abstract from other risk determinants, like asset firesales and bank
size. Therefore, the parameter of price responsiveness has been set to zero,
and initial assets of bank j is equal for all banks. Results are presented in a

09 - —
08 — —
07 — —
06 — —
05— —
0.4 - —

0.3 1
0zl [E—
1
1 2 3

Mumber of Interbank Links in the Model

Contribution to Expected Systemic Risk by Bank 1

09 — —

os - — E—— 1
— — :
— R
06 — —

05 — - _

Expected Systemic Risk

04 — —
03— —
02— —
1 1 1 1

a 1 2 3
Murnber of Interbank Links in the Model

Figure 8: Effect of Number of Interlinks on Expected Systemic Risk

box plot diagram. When investigating the medians (red lines), the plots sug-
gest that expected systemic risk, as well as bank 1’s contribution to it, tend
to increase with the number of active links across banks. However, focusing
on the upper and lower quartiles (designated by the blue boxes), the whiskers
which extend to the extreme data points (black lines), and to outliers (red
plus symbol), demonstrate that there is no monotonous relationship between
number of interbank links and expected systemic risk, or contribution to it.
In the network literature this property is sometimes labeled 'robust, yet
fragile’, meaning that a growing number of interbank linages will render
the network more robust vis-a-vis small shocks, and at the same time more
vulnerable to large shocks. Since in this case the shock vectors are the same,
the ‘robust yet fragile’ property follows from a specific network structure,
namely cross-exposures between two banks, akin to a mutual insurance.
The box-plots in Figure 8 suggest that expected systemic risk as well as
a bank’s contribution to it increase with the number and the intensity of
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Figure 9: Effect of Financial System Structures on Expected Systemic Risk

interlinkages in the financial system.

As an alternative representation, the effect of the interlinkage-channel on
expected systemic risk is presented in Figure 9 analogously to Figure 6. It
again relies on the baseline specification, but this time the firesales channel
is shut down. In other words, the parameter for price responsiveness, &, is set
to zero, while all banks are starting with the same amount of initial assets,
parameter A.

Qualitatively the results remain broadly the same. However, two points
deserve mentioning. First, in Figure 9 expected systemic risk (lower panel)
as well as bank 1’s contribution to it (upper panel) turn out to be lower than
before. For some structures with a low level of expected systemic risk, such
as structure 32, the decrease of expected systemic risk (from 0.87 on Figure
6 to 0.49 on Figure 9) and bank 1’s contribution to it (from 0.29 on Figure 6
to 0.17 on Figure 9) are significant. For other structures, such as for example
structure 61 which is at the high end of expected systemic risk, the effect is
relatively small (expected systemic risk decreases from 0.99 on Figure 6 to
0.94 on Figure 9 and bank 1’s contribution to it from 0.33 on Figure 6 to
0.31 on Figure 9.).
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Second, the ordering of structures along the x-axis can be affected, provid-
ing further evidence that the firesales channel impacts expected systemic risk
arising through different interlinkage structures to different extents. Shock
transmission via direct interlinkages takes only place if a debtor bank is hit by
a shock which is strong enough to turn the bank’s net-value negative because
the direct interlinkage channel only gets contagious once the debtor bank’s
equity has been completely extinguished. The analysis of Sub-Section 4.2
has already provided evidence that the firesales channel increases the impact
of shocks, as, for example, a high value for the parameter for price respon-
siveness, £, causes the whole financial system to default at even tiny shocks.
This feature indirectly also impacts the effect of interlinkages and can thus
affect expected systemic risk as well as banks’ contribution to it in some
structures.

Consider, for example, expected systemic risk and bank 1’s contribution
to it in structures 19 and 25 (Tables 9 and 10, respectively) on Figures 6
and 9. Both structures yield the same expected systemic risk on the same
figure (0.96 on Figure 6 and 0.79 on Figure 9.). However, comparing bank 1’s
contributions to expected systemic risk (upper panel) on Figure 6 with the
firesales channel being active, bank 1 contributes less to expected systemic
risk in structure 25 (0.32) than in structure 19 (0.33). By contrast, with the
firesales channel shut down, on Figure 9 bank 1 contributes relatively more
to expected systemic risk in structure 25 (0.30) than in structure 19 (0.25).

This change in the relative magnitudes of systemic risk attached to partic-
ular network structures are a consequence of the interaction between lending
(cross-) exposures and asset firesales, as well as the mean shock size. The
underlying mechanism can be investigated by quantifying the risk-channels
through which bank 1 contributes to expected systemic risk. Considering the
interlinkage channel in isolation, bank 1’s contributions to expected systemic
risk are considerably larger in structure 25 than in structure 19.2 Further-
more, in structure 25 bank 1 constitutes a larger proportion of the financial
system (0.37) and has more non-liquid assets (0.92) than in structure 19
(0.33 and 0.8, respectively). Depending on the shock scenario, bank 1 can

24 A5 can be seen on Tables 9 and 10, in structure 25 bank 3 has net-exposure to bank
1 and bank 2 has net exposure to bank 3, while in structure 19 bank 2 has net-exposure
to bank 1 and bank 1 has net exposure to bank 3. This means that in structure 19 bank
1 can directly send a shock to bank 2 and/or transmit a shock from bank 3 to bank 2. In
structure 25, however, bank 1 can directly send a shock to bank 3 which will transmit the
shock even further to bank 2. Ceteris paribus, in the model a bank X that transmits a
shock to another bank Y, which inn turn forwards the shock to a third bank Z contributes
more to systemic risk than a second bank X which sends a shock to another bank Y but
also forwards a shock from one bank Z to another bank Y.
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contribute more to systemic risk in structure 25 than in structure 19, across
all three channels.

This is reflected on Figure 9 where bank 1 contributes more to expected
systemic risk in structure 25 than in structure 19. Note that when the firesales
channel is shut down, the interconnection channel is generally weak in the
baseline specification. It therefore merely plays a minor role in this bank’s
contribution to expected systemic risk.?> We summarize these observations
by stating that bank 1’s larger systemic risk contribution in structure 25 as
opposed to structure 19 in Figure 9 is apparently driven by the larger size of
bank 1 in scenario 25.

Furthermore, according to Figure 6, bank 1 contributes slightly more to
expected systemic risk in structure 19 than in structure 25. The change of
order between the two structures when the firesales channel is active — ren-
dering shocks more severe — can be traced to the properties of the shock
distribution.?® Since shocks close to the mean receive a higher probability
weight in the computation of the contribution to expected systemic risk than
shocks on the upper range of the interval of shocks analyzed, bank 1 con-
tributes more to expected systemic risk via the interlinkage channel — which
in this case outweighs its relatively smaller contribution from the other two
channels — in structure 19 than in structure 25 on Figure 6.2

Shutting down the firesales channel also has mixed effects on expected
systemic risk, depending on the actual network structure of the financial
system (lower panels on Figures 6 and 9). For example, the second lowest
expected systemic risk is found in structure 8 (0.88; Table 5) on Figure 6.
This structure is relatively safe because only banks 1 and 3 which have cross-

25Banks that have borrowed from other banks to invest into non-liquid assets are rela-
tively safe, given the firesales channel shut down, because non-liquid assets are similar to
liquid assets in these circumstances.

26With the firesales channel open, shocks to banks in the financial system have more
impact, increasing also the influence of the interconnection channel. Taking into account
the mean size of shocks to the system, a further needs to be considered: a large shock to
bank 1, that is, a shock on the upper range of the shocks considered, to bank 1, quickly
erases equity such that the bank cannot use netting anymore to reduce its counterparty
exposures. In case of a medium shock to bank 1, i.e. a shock close to the mean of the
shock distribution, equity will not be wiped out, so it may improve its capital ratio via
netting. Since bank 1 can net more counterparty exposure in structure 25 (0.3) than in
structure 19 (0.15), it has less chances to recover via netting in the latter structure and is
thus more likely to forward a shock to a bank that has exposure to it.

2TNote that this interpretation is corroborated by the fact that summing up all con-
tributions to expected systemic risk by bank 1 with equal weights, that is, relaxing the
assumption that shocks near the mean have a higher probability and all other parameters
set as in the baseline specification, results, as expected, in bank 1 contributing more to
expected systemic risk in structure 25 than in structure 19.
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exposure but no net-exposure to each other are interlinked. This pattern
allows the banks to engage in self-insure against shocks, via netting. However,
with the firesales channel shut down (Figure 9), the second lowest level of
expected systemic risk can be found in structure 29 (0.62; Table 12). Again,
this change of ranks results from the particular role of interlinkages when
firesales are disallowed: In structure 29, bank 2 has a net exposure vis-a-vis
bank 3. The latter is leveraged and holds more non-liquid assets than the
other banks. However, with the firesales channel shut down, bank 3 appears
safe because the non-liquid assets are now similar to liquid assets, so shock
are transferred to bank 2 via the interlinkage channel only infrequently. The
non-liquid asset-based shock buffer lowers systemic risk by more than the
quasi mutual insurance provided by the cross-exposure between banks 1 and
3 in structure 8. In addition, in the latter structure all banks hold the same
amount of non-liquid assets, so banks that theoretically may send shocks via
interbank lendings have no particularly large shock buffer from non-liquid
asset holdings, given the firesales channel is shut down.

Summing up, the baseline specification with no firesales and no size dif-
ferences, we find four insights relating to the role of the the interlinkage
channel. First, expected systemic risk as well as the bank’s own contribu-
tion to systemic risk tend to increase with the amount of interlinkages in
the financial system. Second, cross-exposure is a form of mutual insurance
(since netting on the interbank market tends to increase the capital ratio)
and thus can lower expected systemic risk, and also banks’ contribution to
it. Third, a positive net-exposure increases expected systemic risk as well
as the contribution to it provided the banks remain net borrowers. Fourth,
the effect of the interlinkage channel on expected systemic risk and bank 1
’s contribution to it depends on the magnitude of the shock to the financial
system which, in turn, is also impacted by the firesales channel. Since the
interlinkage channel only becomes contagious at relatively large shock levels,
that is, those shocks which turn the net-value of banks negative, and the
firesales channel amplifies the effect of shocks to the financial system, the
effect of the interlinkage channel on expected systemic risk as well as banks’
contribution to it increase with the extent of firesales in the financial system.

The next sub-section analyzes the effect of a bank’s size on expected
systemic risk.
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Contribution to Expected Systsmic Risk by Bank 1

Expectad Systemic Risk

4.4 The Effect of Banks’ Size on Expected Systemic
Risk

The effect of banks’ size on expected systemic risk is isolated via shutting
down the interlinkage and firesales channels. Using structure 32 (Table 14)
in which no banks borrow from or lend to each other and the price respon-
siveness of the liquid asset, parameter &, set to zero, the amount of initial
assets of bank 1 is increased over a range from 1 to 3, while the amount of
initial assets of banks 2 and 3 remains set to 1 as in the baseline specification.

Figure 10 displays the effect of varying bank 1’s initial assets on expected
systemic risk (lower panel) as well as its contribution to it (upper panel)
in structure 32. Controlling for the effect of the firesales and interlinkage

0= | | | | | | | | | =
1 12 4 16 18 2 22 24 26 28 3
Size of Bank 1 Measured by Initial Asssts

Figure 10: Effect of an Increase of Size on Expected Systemic Risk in Finan-
cial System Structure 32

channels and increasing bank 1’s size results in increasing its contribution
to expected systemic risk (from 0.16 to 0.29). However, given the definition
of systemic risk as well as the symmetry of the shock vectors and assigned
probabilities which are used in the computation of expected systemic risk, the
expected amount of systemic risk does not change (constantly at 0.49). This
outcome is driven by the fact that in the weighted sum of systemic risk over
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all shock scenarios the changes in systemic risk resulting from increasing
bank 1’s size relatively to the other banks in the financial system exactly
offset each other.

Increasing bank 1’s size does not change its probability of default in any
shock scenario but only increases its proportion in the financial system as
measured by the sum of its assets and reduces the proportion of the remainder
two banks by the same amount. When increasing bank 1’s size, systemic risk
thus increases in scenarios in which only bank 1 or bank 1 and one other bank
default, decreases in scenarios in which only bank 2 or 3 or both default, and
remains unchanged in scenarios where all banks or none of the banks default.
For example, say in scenario A only bank 1 defaults while in scenario B banks
2 and 3 default with both scenarios having the same probabilities. Increasing
the relative size of bank 1 in the financial system results in increasing systemic
risk in scenario 1 and lowering it by the same amount in scenario 2. Expected
systemic risk computed according to Equation (10) including both scenarios
does not change. Note that the level of expected systemic risk can be affected
of course if the distribution of shocks is not symmetric.

In summary, controlling for the effect of the interlinkage and firesales
channels, increasing a bank’s size with respect to the financial system in-
creases the contribution to expected systemic risk from that bank and lowers
the contribution of the remainder two banks by the same amount such that
expected systemic risk remains unaffected.

The next sub-section investigates the effect of the capital requirement
ratio on expected systemic risk.

4.5 The Effect of Capital Requirements on Expected
Systemic Risk

In order to lower systemic risk in the financial system, several calls have
been voiced to increase banks’ capitalization. Since capital held in excess of
liabilities is the main shock buffer before a bank starts emitting shocks via
its interbank liabilities it is regarded to be one of the most effective tools in
macro- and micro-prudential regulation. For example, under the proposed
Basel IIT framework an essential strengthening of banks’ capitalization is
envisaged to make the financial system more resilient.?8

In the following analysis the implications of different levels of banks’ cap-
ital ratios on expected systemic risk will be analyzed with all remainder
parameters set as in the baseline specification. Figure 11 displays expected
systemic risk (lower panel) as well as bank 1’s contribution to expected sys-

28Bank for International Settlements (2010).
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temic risk (upper panel) when the required equity ratio in the financial system
is varied over a range from 1% to 25%.

Expected systemic risk and bank 1 ’s contribution to it are displayed
along the y-axis, the varying levels of required capital are displayed along
the x-axis, and the interlinkage structures have been ordered along the z-axis
according to their highest sum of expected systemic risk or contribution to
it, that is, the integral over the x-axis for a given structure. For example,
adding up all contributions to expected systemic risk from bank 1 over the
range of analyzed required capital ratios, structures 12 and 64 (Tables 7
and 16, respectively) yield the highest values, which is the reason for these
structures being farthest right on the upper panel.

As regards the ordering of financial system structures along the z-axis,
results remain broadly the same with respect to figure 6. In the model
increasing the parameter for the required capital ratio results in lowering
expected systemic risk as well as bank 1’s contribution to it. The lowest
sum of contribution to expected systemic risk from bank 1 is achieved in
structure 31 (Table 13). The highest expected systemic risk over all capital
requirements analyzed is achieved in structures 10 and 61 (Tables 6 and
15, respectively). The lowest sum of expected systemic risk is obtained in
structure 27 (Table 11), where at high levels of bank capitalization the self-
insurance mechanism via cross-exposures becomes very effective, making it
thus less risky than structure 32 (Table 14) which yields the lowest level of
expected systemic risk on Figure 6.

The analysis in this sub-section provides evidence that increasing the
capital requirement is an effective means to lower expected systemic risk and
banks’ contribution to it.

Overall, the results in this section show that our model reproduces the
stylized facts which could be observed during the recent financial crisis. The
main risk-channels which cause the emergence of systemic risk are interlink-
ages, firesales and the size of a bank with respect to the financial system. It
has been shown that banks’ capital requirements are an effective shock buffer
and can make the financial system more resilient to expected systemic risk
as well as banks’ contribution to it.

In the following section the model will be used to explore a systemic
risk charge and fund which address systemic risk from a macroprudential
perspective.
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Figure 11: Effect of the Capital Requirement on Expected Systemic Risk
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5 Developing a Systemic Risk Charge and Fund

A supervisor’s approach to manage systemic risk should feature in particular
three characteristics. First of all, it should address extreme shock scenarios,
that is, shock events with an unusually high impact on the financial system.
Systemic risk arises primarily through unexpectedly high losses which gen-
erally lead to firesales, contagion, and the default of individual institutions.
To properly identify risk-channels and banks’ contribution to expected sys-
temic risk, these scenarios should cover a sufficient range of different shocks.
Second, addressing systemic risk should not give wrong incentives, that is, it
should not cause moral hazard? but, akin to a Pigouvian tax, incentivize fi-
nancial institutions to lower their negative externality on the financial system
which arises through their contribution to systemic risk. Third, the approach
should envisage to preserve with a high probability even in strongly adverse
scenarios a fraction of the financial system which is deemed necessary to
prevent a financial shock from severely affecting the real economy.

It has been shown in the previous section that banks’ contribution to
systemic risk is driven by three risk-channels, (i) the extent of direct shock
transmission through interbank liabilities which itself depends on the in-
terlinkage structure and the amounts lent and borrowed, (ii) the extent of
firesales which themselves depend on the amount of non-liquid asset holdings
and the price responsiveness of the non-liquid asset, and (iii) banks’ size rel-
ative to the financial system. If the supervisor wants to lower systemic risk,
it is unlikely that he starts regulating all these dimensions involved in banks’
contribution to expected systemic risk. However, it makes sense to use in
particular one instrument, additional capital, to make the financial system
more resilient to expected systemic risk. On the one hand, as has become
clear in the previous section, this instrument has a high impact as shock
buffer to lower expected systemic risk and, on the other hand, remaining
administrative regulatory approaches such as, for example, forcing a bank
to change its portfolio composition or counterparties, would be unfeasible in
reality.

Our model will be used to investigate a systemic risk management ap-
proach in which a systemic risk charge and systemic risk fund are determined
within an SVaR concept.®® As will become clear, the SVaR concept combines

29Gee Poole (2008) for a discussion of financial institutions, financial stability, and moral
hazard.

30The following SVaR approach features some of the characteristics of the VaR concept
which is a well established measure in risk management used on the level of individual
banks. The VaR indicates for a given portfolio the loss it will not exceed in a specified
time horizon with a given probability. See, for example, Jorion (2006).
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the previously outlined characteristics in a unified framework. The general
idea is to charge banks according to their contribution to expected systemic
risk. Banks which contribute more to expected systemic risk have to pay
a higher risk charge than banks which contribute less. These payments are
used to capitalize a systemic risk fund which is re-injected into the financial
system in an optimal way to make it more resilient to systemic risk.

In the following, the approach to determine (i) the optimal amount of
capital for the risk fund and (ii) the individual financial institution’s contri-
bution to it, as well as (iii) the optimal (macroprudential) capital amounts
individual financial institutions are injected from the systemic risk fund to
make the financial system more resilient to systemic risk will be outlined.

To set up the systemic risk charge and fund, the supervisor first of all
defines a distribution of extreme shock scenarios deemed possible. Given our
model, the supervisor will be able to compute the expected systemic risk as
well as individual institutions’ contribution to it associated with the stress
scenarios. Next, the supervisor chooses an SVaR. The SVaR is defined as the
proportion of the financial system which the supervisor is willing to accept to
become insolvent in a given quantile of the shock distribution. For example,
an SVaR could be defined as ‘In 95% of all shock-scenarios systemic risk shall
not exceed 0.37’. Given all shock scenarios the supervisor then computes the
minimum (macroprudential) capital amounts which banks in the financial
system need to be injected to fulfill this SVaR. The sum of these additional
capital injections (which need not be the same across banks) constitutes the
overall necessary amount of capital in the systemic risk fund.

The fund is capitalized via charging financial institutions according to
their contribution to systemic risk. Equation (13) displays the systemic risk
charge, H, for the ¢’th bank.

oF

3597

where ¢ € j, U is the amount of capital to be collected for the entire
systemic risk fund, and ¢ designates the contribution to expected systemic
risk by bank ¢ as measured by the Shapley value. After collecting all individ-
ual charges in the fund,®*' the money is re-injected into ‘neuralgic’ financial
institutions, that is, those institutions which increase the financial system’s
resilience most, as additional capital which they are required to hold as liquid
assets. The additional capital can be injected on top of the required capital
from microprudential regulation in the form of preferred stock such that its

(13)

31Note that at this point it is assumed that banks can pay these charges from profits,
for example, by deferring dividend payments.
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function as an additional shock-buffer only emerges after other shareholders’
equity has been extinguished.

As will become clear in the following, requiring banks to hold this macro-
prudential capital in addition to the microprudential capital requirement, the
risk fund primarily addresses systemic risk arising through the interlinkage
channel. The other two risk channels are only indirectly affected. The size
channel is not directly affected because the additional capital is not included
in computing banks’ proportion of the financial system. Furthermore, banks
default if they cannot fulfill both the macro- and microprudential capital
requirement, that is, a default does not get more unlikely through addi-
tional capital. The firesales channel is also not directly affected because of
a same argument. Since banks have to maintain the higher capitalization
their market behaviour as regards sales of non-liquid assets does not change.
However, both channels are indirectly affected as, for example, a reduced
impact from the interlinkage channel because of a higher capitalization can
prevent a shock from being spread further via that channel to a bank with
a sizeable amount of non-liquid assets on the balance sheet. The firesales
channel is thus indirectly dampened via less shock transmission through the
interlinkage channel.?

An important feature of the SVaR concept is that individually all banks
can default. If none of the banks’ sizes exceeds the proportion of the financial
system that is accepted to break down under the SVaR, then, depending on
which scenario realizes, all three banks are threatened with insolvency. This
reduces the risk of moral hazard from the systemic risk fund.

In the following, the outlined systemic risk charge and fund will be com-
puted for the baseline specification of the financial system developed in the
previous section. The structure of the financial system analyzed is structure
19 (see Appendix A as well as Table 9 in Appendix B at the end of this
paper). The shocks are modeled as outlined in Section 2.

The supervisor’s SVaR is defined as ‘In at least 95% of possible shock
scenarios, not more than 37% of the financial system shall default’. The
following exercise consists of finding the minimum additional capital amounts

32The firesales and size channels could be addressed via ‘triggering’ in case a systemic
shock emerges either (i) reduced required capital ratios, if the additional (macropruden-
tial) capital had been injected as preferred stock, or, (ii) the conversion of debt into equity,
in case the additional (macroprudential) capital had been injected in the form of Condi-
tional Convertible Bonds (CoCos). (For a review on the advantages and disadvantages
of contingent capital see Pazarbasioglu, Zhou, Leslé, and Moore (2011).) However, any
threshold value, be it triggered by a market based measure or by a supervisory authority,
can lead to perverse incentives and cause moral hazard. Investigating the effect of such
triggers in our model would be interesting to pursue but is beyond the scope of this paper
and thus not addressed.
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that need to be injected into financial institutions to fulfill this SVaR. Since
in structure 19 the biggest bank constitutes 37% of the financial system
(measured by the size of their balance sheets, banks 1 to 3 constitute, in
rounded values, 33%, 29%, and 37% of the financial system, respectively),
theoretically each bank can default with the SVaR still being fulfilled if the
other two banks remain solvent in a given shock scenario.

The loss function, €, which is minimized to compute the optimal amount
of additional capital that needs to be injected to fullfill the SVaR is given by
Equation 14.

€= ZTi—FZOw(T), (14)

where 7; is the additional amount of capital injected into financial institu-
tion i. o, is the systemic risk in scenario w, with L the number of scenarios
that exceed the accepted proportion of systemic risk after exclusion of the
percentage amount of scenarios the supervisor allows to attain or exceed the
maximum systemic risk. For example, consider the supervisor sets up 100
scenarios, with each scenario assigned a different probability. According to
the SVaR, in 95% of all scenarios the proportion of insolvent banks with
respect to the financial system shall not exceed 0.37. Say, in case the su-
pervisor injects no additional capital at all, that is Zf 7, = 0, the sum of
probabilities of scenarios resulting in excess of a systemic risk of 0.37 is 25%.
Inspecting Equation (14), € then consists of the sum of systemic risk resulting
in all scenarios exceeding the SVaR, excluding those scenarios in excess of
the SVaR which add up to the highest expected systemic risk based on 5%
of the shock scenarios.??

Note that minimizing Equation (14) to find out the necessary additional
capital and the financial institutions in which additional capital needs to
be injected requires a non-standard optimization technique because the ob-
jective function can have multiple local minima. The simulated annealing
approach,®® a probabilistic metaheuristic optimization procedure, is used to
find the optimal solution for Equation (14). A parallelized variant of the
optimization algorithm is outlined in Appendix C at the end of this paper.

33In Equation (14) probabilities are not used to weight the scenarios. However, exclud-
ing the 5% of scenarios in excess of the SVaR which result in the highest expected value
yields the lowest value of the loss function. In any case, in the exercise, all shock scenarios
included in the second term of equation (14) consist of at least the systemic risk value
arising through the insolvency of two banks which exceeds the first term of Equation (14).
The supervisor has thus a strong incentive to make sure the SVaR is not exceeded in any
of the scenarios representing 95% of the shock distribution.

31Gee Kirkpatrick, Gelatt, and Vecchi (1983).
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Contribution to Expected Systemic Risk of Bank 1 0.3289

Contribution to Expected Systemic Risk of Bank 2 0.3017
Contribution to Expected Systemic Risk of Bank 3 0.3246
Contribution of Bank 1 to Systemic Risk Fund 0.0472
Contribution of Bank 2 to Systemic Risk Fund 0.0433
Contribution of Bank 3 to Systemic Risk Fund 0.0465

Amount of Capital Injected to Bank 1 from Systemic Risk Fund 0.0494

Amount of Capital Injected to Bank 2 from Systemic Risk Fund 0.0350

Amount of Capital Injected to Bank 3 from Systemic Risk Fund 0.0526

Table 2: Results of the Systemic Risk Fund Exercise in Financial System
Structure 19

Table 2 displays the optimal results from the systemic risk fund exercise.
The first three rows display the banks’ weighted Shapley values, that is, their
contribution to expected systemic risk, resulting from the set of all shocks.
Note that these Shapley values are calculated following Equation (12) on the
basis of the financial system without any capital injections from the systemic
risk fund. Rows four to six display the resulting optimal capital risk charge
— which depends on the necessary size of the systemic risk fund as well as
banks’ individual contributions to expected systemic risk — for each bank.
These values are computed following Equation (13) where W is obtained
by minimizing Equation (14) and summing up the optimal individual capital
injections. Rows seven to nine which are also obtained from the minimization
of Equation (14) display the optimal amount of capital injected from the
systemic risk fund into the respective banks to fulfill the SVaR.

Three points are worth mentioning. First of all, banks’ contribution to
expected systemic risk is driven by the three risk-channels outlined before,
size, firesales, and interlinkages. In particular note that the higher contri-
bution to expected systemic risk of bank 1 with respect to bank 3 in this
structure has already been analyzed in Sub-Section 4.3 in the context of in-
vestigating the effect of interlinkages on expected systemic risk.>® Bank 2
contributes least to expected systemic risk because the other banks have no
net-exposure to it, it holds the smallest amount of non-liquid assets, and
constitutes the smallest proportion of the financial system. This is reflected

35Given the symmetry of all structures, the contribution of bank 1 to expected systemic
risk in structure 25 is the same as the contribution of bank 3 to expected systemic risk
in structure 19. Sub-Section 4.3 clarified why in the baseline specification displayed on
Figure 6 the contribution to systemic risk by bank 1 (upper panel) is larger in structure
19 than in structure 25.
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in the contributions to expected systemic risk and the banks’ contribution
to the systemic risk fund on Table 2. Bank 1 contributes slightly more to
expected systemic risk and thus has to pay the highest charge, followed by
banks 3 and 2, respectively.

Second, the optimal size of the systemic risk fund (0.14), obtained when
summing up rows 7 to 9 on Table 2 represents 3.5% of system-wide assets.
Calculating for each shock the difference between the net-value of the fi-
nancial system, that is, the sum of all banks’ net-values, with and without
pre-injecting the capital from the systemic risk fund into the banks, and
summing up these differences weighted with the shock probabilities shows
that in expectation the financial system would have to be injected ex-post
an additional capital of about 4.1% in relation to system wide assets if the
same outcome as with pre-injecting the capital amounts was desired. This
expected size of an ex-post bail-out exceeds the size of the fund that is imme-
diately re-injected into the financial system to fulfill the supervisor’s SVaR.3¢
This second result is driven by pre-emptively nipping the contagious effects
of financial shocks in the bud, in particular knock-on defaults via the inter-
linkage channel and resulting firesales of non-liquid assets when the systemic
risk fund is immediately injected into the financial system.

Third, the optimal amounts of additional capital injected from the sys-
temic risk fund do not fully reflect the ranking which emerges in banks con-
tribution to expected systemic risk. Although bank 1 contributes more to
expected systemic risk than bank 3, it is optimal to inject more capital into
bank 3 to fulfill the SVaR.3" Taking a systemic perspective, the optimal
macroprudential capitalizations thus need not necesarily reflect banks’ con-
tribution to systemic risk in a proportional way. This result is mainly driven
by using different probability weights when computing banks’ contribution
to expected systemic risk, however, following the definition of the SVaR,
equally weighting 95% of the shock scenarios for computing banks’ optimal
additional capital injections.?®

36Note that the size of an ex-post bail-out fund gets even larger if one does not take the
expected difference over all scenarios, but the largest difference that results in the 95% of
scenarios in which the SVaR must be fulfilled.

3TNote that this result is robust to controlling for scenarios in which more than 37%
of the financial system default, that is, the 5% of scenarios which are accepted under
the outlined SVaR to exceed the highest proportion the supervisor is willing to accept as
insolvent in the system. Calculating the contribution to expected systemic risk without
additional capital injections only for the 95% of scenarios in which 62% (due to rounding,
the three banks’ proportions add up to 0.99) or more of the banking system remains
solvent with the optimal injections from the systemic risk fund, results in the same order
of contribution to expected systemic risk as displayed on Table 2.

38The probability weights play no role in the 95% of scenarios in which the supervisor
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Note that qualitatively, the same result emerges, however more robust
to distributional assumptions about the shock scenarios, when taking into
consideration that additional capital injections affect the channels of con-
tribution to expected systemic risk to different extents. As outlined before,
increasing a bank’s capitalization does not directly affect its contribution to
expected systemic risk via the size and firesales channels. The main impact
of additional capital is lowering expected systemic risk emerging via the in-
terlinkage channel. To make this point clear consider, for example, a slight
modification of the baseline specification which consists of strongly increasing
the size of one of the financial institutions while making the remainder two
financial institutions highly interlinked in the financial system. Increasing
bank 1’s initial assets, parameter A, to 2, leaving all remainder parameter
values as in the baseline specification, and taking financial system structure
60 results in the desired setting. Table 3 displays the financial system as well
as the banks’ proportions in the outlined set up.

Bank 1 | Bank 2 | Bank 3 | NLA LA Proportion
Bank 1 0.30 0.30 1.12 0.28 0.44
Bank 2 | 0 0 1.04 0.26 0.28
Bank 3 | 0 0 1.04 0.26 0.28
ROW 1.86 0.92 0.92

Table 3: Financial System Structure 60 with Parameter A increased to 2 for
bank 1

As can be seen, bank 1 constitutes the largest proportion of the financial
system (44%) while banks 2 and 3 both constitute a relatively little propor-
tion (28%, each). Furthermore, bank 1 holds the largest amount of non-liquid
assets (1.12) while banks 2 and 3 hold a relatively small amount (1.04, each).
With regards to interlinkages, bank 1 has net-exposure both to banks 2 and
3. In this setting bank 1 contributes most to expected systemic risk via the
size and firesales channels and banks 2 and 3 contribute most to expected
systemic risk via the interlinkage channel.

Defining the SVaR as ‘In 95% of all shock-scenarios systemic risk shall not
exceed 0.44" and repeating the systemic risk fund exercise, Table 4 displays

insures that 62% or more of the financial system remain solvent. In these scenarios the
supervisor only tries to find the minimum amount of capital which ensures that at most one
bank defaults. As has been outlined in Sub-Section 4.3, without giving different weights
to the shock scenarios, bank 1 contributes more to expected systemic risk in structure
25 than in structure 19. Given the symmetry of all structures, the contribution of bank
1 to expected systemic risk in structure 25 is the same as the contribution of bank 3 in
structure 19.
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Contribution to Expected Systemic Risk of Bank 1 0.4693

Contribution to Expected Systemic Risk of Bank 2 0.2610
Contribution to Expected Systemic Risk of Bank 3 0.2610
Contribution of Bank 1 to Systemic Risk Fund 0.0731
Contribution of Bank 2 to Systemic Risk Fund 0.0407
Contribution of Bank 3 to Systemic Risk Fund 0.0407

Amount of Capital Injected to Bank 1 from Systemic Risk Fund 0.0000

Amount of Capital Injected to Bank 2 from Systemic Risk Fund 0.0772

Amount of Capital Injected to Bank 3 from Systemic Risk Fund 0.0772

Table 4: Results of the Systemic Risk Fund Exercise in Financial System
Structure 60

the optimal results for the financial system outlined on Table 3.

Again, there is no correspondence between a bank’s systemic risk charge
and the capital that is optimally injected into it. Though bank 1 contributes
most to expected systemic risk and thus pays the highest charge for the
systemic risk fund, from a financial stability perspective it is optimal to
inject this capital into banks 2 and 3, only. As outlined before, this outcome
results from the fact that the contribution to expected systemic risk is driven
by three different risk-channels which are affected to a different extent by the
supervisor’s instrument to lower expected systemic risk, additional capital
injections. Since the contribution of bank 1 is only driven by the firesales
and size channels which are not directly addressed in the model by additional
capital, the SVaR is optimally attained via injecting all additional capital
into banks 2 and 3 which contribute most to expected systemic risk via the
interlinkage channel.?

Overall, the SVaR analysis shows that linking a bank’s macroprudential
capital requirements directly to its contribution to systemic risk, as, for ex-
ample, suggested in Acharya, Pedersen, Philippon, and Richardson (2009),%°

3Note that the result is robust to relaxing the distributional assumptions such that
all scenarios emerge with the same probabilities. Furthermore, it is robust to controlling
for scenarios in which more than 44% of the financial system default, that is the 5% of
scenarios which are accepted under the outlined SVaR to exceed the highest proportion the
supervisor is willing to accept as insolvent in the system. Calculating the contribution to
expected systemic risk without additional capital injections only for the 95% of scenarios
in which 56% or more of the banking system remain solvent with the optimal injections
from the systemic risk fund, results in the same order of contribution to expected systemic
risk as displayed on Table 4.

40The authors propose, inter alia, that “[c|apital requirements could be set as a function
of a financial firm’s marginal expected shortfall” (p. 8) which is their measure for a bank’s
contribution to systemic risk. See also V. Acharya and M. Richardson (2009).
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is not necessarily an optimal and consistent policy approach when taking a
systemic risk management perspective. Following the results in our frame-
work, linking banks’ macroprudential capital requirements directly to their
contribution to expected systemic risk can be inconsistent or inefficient if, as
is likely the case, the drivers of expected systemic risk are differently affected
by additional macroprudential capital requirements. This result becomes
more intuitive when pointing out that a variant of the Tinbergen rule applies
in our setting. The Tinbergen rule implies that consistent economic policy
requires the number of policy instruments to at least equal the number of
policy targets.*! In our systemic risk management approach a consistent
and efficient economic policy calls for the same requirement because there
are two policy targets which the supervisor tries to achieve. First of all, a
numerical value with respect to expected systemic risk, the SVaR, and, sec-
ond, to incentivize banks to lower their contribution to expected systemic
risk via an appropriate risk charge. Though ultimately related, both targets
can become distinct when the risk-channels through which banks contribute
to expected systemic risk are affected by the instrument to achieve systemic
stability, additional capital, to a different extent.

The solution to the dilemma in the SVaR concept is to use two instru-
ments, a levy to fulfill the incentive requirement*? and a capital injection to
guarantee systemic stability. Though a proper incentive requirement should
foster the target of financial stability, it is possible that both targets cannot
be achieved by only one instrument in an efficient or in a consistent way if
the risk-channels are unequally affected by the single instrument. Merging
the two instruments in case the risk-channels are indeed affected differently
by additional capital injections can result in not properly incentivizing finan-
cial institutions to lower their contribution to expected systemic risk®® or in

41Gee J. Tinbergen (1952).

42Note that the incentive requirement implied by the SVaR is only fulfilled if financial
institutions are aware of how they can lower their contribution to systemic risk. This how-
ever potentially depends in part on the decisions taken by other banks. In the model and
SVaR approach the incentive requirement is only fulfilled to the extent that banks which
contribute more to systemic risk face a higher risk charge. It still needs to be investigated,
desireably in richer framework where banks do not only try to fulfill a capital requirement
but also maximize their profit, whether a trade-off between maximizing profit and paying
an adequate risk charge for the resulting contribution to systemic risk is feasible.

43This is the case if each bank is only charged the optimal amount of capital it will be
required to hold as additional (macroprudential) capital. In the example on Table 4 this
would be achieved via setting the contributions of banks to the systemic risk fund, rows
4 to 6, to the respective values displayed in rows 7 to 9. The SVaR would be optimally
fulfilled, however, the incentive requirement not. Hence the policy approach would be
inconsistent.
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requiring a systemic risk fund with a larger amount than the one implied
by the optimal SVaR approach** which then results in a sub-optimal capital
allocation.

The next section concludes.

44This is the case if the incentive requirement is fulfilled, that is, banks are charged
according to their contribution to systemic risk while fulfilling the SVaR, however, not in
an optimal way. With respect to the example on Table 4 this is achieved via including the
additional restriction in the optimization procedure that the amount injected into a bank
must be equal to the amount charged from that bank. In the example, this restriction
leads to a higher sum of necessary capital injections, that is, in a sub-optimal capital
allocation with respect to not including the restriction.

47



6 Conclusion

In this paper a model that allows to replicate the main stylized facts of
systemic risk which came up during the recent financial crisis has been de-
veloped. In our model, the three main risk-channels through which systemic
risk arises are banks’ size, their interlinkages, and firesales of non-liquid as-
sets. Furthermore, a proposed systemic risk charge and fund are designed
within an SVaR approach which allows to make the financial system more
resilient to systemic risk and charges banks according to their contribution
to expected systemic risk. This systemic risk management concept allows
to simultaneously determine the necessary capital of a systemic risk fund,
banks optimal (macroprudential) capitalization, and risk charge in a unified
framework which is consistent and efficient.

Among numerous insights into the complex processes arising in an interde-
pendent financial network two key results are of particular importance. First
of all, keeping additional (macroprudential) capital obtained from charging
banks according to their contribution to expected systemic risk in the finan-
cial system to make it more resilient to extremely adverse shock scenarios
is likely to come at a lower cost than bailing out banks ex-post. The rea-
son for this outcome is that re-injecting capital into ‘neuralgic’ points of the
financial system helps nipping crisis developments and contagion effects in
the bud before they can unfold their mischief. Besides the argument that a
systemic risk fund which is not injected into the financial system but kept
centralized in a ‘government chest’ sparks political interest to divert its in-
tended use after a longer period with no systemic events, the result of our
systemic risk fund analysis provides further evidence as to why it is better to
keep macroprudential capital which is levied via a risk charge in the financial
system.

Second, using the model to analyze the proposed systemic risk charge and
fund provides evidence that there is not necessarily a correspondence between
a bank’s contribution to systemic risk — which determines its risk charge —
and the capital that is optimally injected into it to make the financial system
more resilient to systemic risk. If the drivers of systemic risk are affected by
additional (macroprudential) capital to different extents one is well advised
to carefully distinguish between a bank’s contribution to systemic risk as
a determinant of its risk charge and the amount of capital injected into
it to make the financial system more resilient. Increasing a bank’s capital
is an efficient administrative instrument to lower systemic risk and banks’
contribution to it. However, not distinguishing between a bank’s risk charge
and its macroprudential capitalization can result in inconsistent or inefficient
economic policy.
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Appendix B: Structures Referred to in the Analysis

The structures of the financial system outlined in the following tables have
been referred to in the analysis of Sections 4 and 5. The entries in the tables
are generated along the parameter settings in the baseline specification. The
left part of each table is built up as outlined on Figure 2, and the right side
outlines the respective bank’s proportion in the financial system as measured
by the amounts of its assets relative to system-wide assets.

Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0.3 ] 0.80 ] 0.20 0.36
Bank 2 0 0| 0.801]0.20 0.28
Bank 3 0.3 0 0.80 | 0.20 0.36
ROW 0.912 0.936 0.912
Table 5: Financial System Structure 8
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0.3 ] 0.80 ] 0.20 0.33
Bank 2 0.3 0| 0.801]0.20 0.33
Bank 3 0 0.3 0.80 | 0.20 0.33
ROW 0.912 0.912 0.912
Table 6: Financial System Structure 10
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0.3 0.8 0.2 0.36
Bank 2 0.3 0| 0.56 | 0.14 0.28
Bank 3 0 0 1.04 | 0.26 0.36
ROW 0.912 | 0.9312 | 0.9168
Table 7: Financial System Structure 12
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0] 1.28|0.32 0.44
Bank 2 0.3 0| 0.56|0.14 0.28
Bank 3 0.3 0 0.56 | 0.14 0.28
ROW | 0.8976 | 0.9312 | 0.9312

Table 8: Financial System Structure 16
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Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0.3 0.8 0.2 0.33
Bank 2 0.15 0.15| 0.68 | 0.17 0.29
Bank 3 0.15 0.15 0.92 | 0.23 0.37
ROW 0.912 | 0.9216 | 0.9024
Table 9: Financial System Structure 19
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0.15 0.15| 0.92 | 0.23 0.37
Bank 2 0.15 0.15 | 0.68 | 0.17 0.29
Bank 3 0.3 0 0.8 0.2 0.33
ROW | 0.9024 | 0.9216 0.912
Table 10: Financial System Structure 25
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0.15 0.15 | 0.80 | 0.20 0.33
Bank 2 0.15 0.15 | 0.80 | 0.20 0.33
Bank 3 0.15 0.15 0.80 | 0.20 0.33
ROW 0.912 0.912 0.912
Table 11: Financial System Structure 27
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0 0.8 0.2 0.30
Bank 2 0 0.3 ] 0.56 | 0.14 0.30
Bank 3 0 0 1.04 | 0.26 0.39
ROW 0.936 | 0.9312 | 0.9168
Table 12: Financial System Structure 29
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0| 0.801]0.20 0.28
Bank 2 0 0.3 0.80 | 0.20 0.36
Bank 3 0 0.3 0.80 | 0.20 0.36
ROW 0.936 0.912 0.912

Table 13: Financial System Structure 31
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Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0 0] 0.80]0.20 0.33
Bank 2 0 0] 0.80]0.20 0.33
Bank 3 0 0 0.80 | 0.20 0.33
ROW 0.936 0.936 0.936
Table 14: Financial System Structure 32
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0.3 0] 0.80]0.20 0.33
Bank 2 0 0.3 0.80 | 0.20 0.33
Bank 3 0.3 0 0.80 | 0.20 0.33
ROW 0.912 0.912 0.912
Table 15: Financial System Structure 61
Bank 1 | Bank 2 | Bank 3 | NLA | LA | Proportion
Bank 1 0.3 0 0.8 | 0.20 0.36
Bank 2 0 0| 1.041]0.26 0.36
Bank 3 0.3 0 0.56 | 0.14 0.28
ROW 0.912 | 0.9168 | 0.9312

Table 16: Financial System Structure 64
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Appendix C: A Parallelized Simulating Annealing Algo-
rithm

To minimize the loss-function outlined in Section 5 (Equation (14)) the sim-
ulated annealing algorithm is used. The algorithm has been developed by
Kirkpatrick, Gelatt, and Vecchi (1983) and is a heuristic optimization pro-
cedure to approximate the global minimum of a complex function that has
multiple local minima.*® It has been inspired from the annealing process
in metallurgy where a slow cooling down of metal insures that atoms have
enough time to form stable crystals without defects.

To minimize a function with the simulated annealing algorithm, new func-
tion values are generated along random changes to the control parameters in
a Markov chain. New solutions that lead to improvements, that is, decreas-
ing values, in the function are always accepted as new element in the Markov
chain, whereas new solutions that lead to an increase in the function value are
only accepted with a certain probability. This acceptance probability is in-
fluenced by a temperature used in the algorithm. At high temperature values
the acceptance probability is high, and at low temperatures this probability is
small. The optimization procedure consists of numerous sub-optimizations
along Markov chains. After each Markov chain the temperature is gradu-
ally lowered which decreases the initially high probability of ‘uphill-moves’
— thus preventing the optimization routine to get ‘trapped’ in local minima.
The final solution is found when the system has ‘frozen’, that is, when for
the length of one Markov chain no new solutions are accepted. Figure 12
displays the simulated annealing algorithm.

In the following, a variant of simulated annealing developed for our ap-
plication is outlined. It uses parallel Markov chains as well as an automatic
adjustment of the stepsize and temperature to increase accuracy and the
chance that the global minimum is found.

Following Parks (1990) new solutions are generated following Equation
15

pit1=pi+D-u, (15)

where p is the vector of control variables, D is a diagonal matrix scaling the
stepsize of changes to the control variables, and u is a vector of uniformly
distributed numbers on the interval (-1,1). D is updated after a successful
draw as D* = (1 — m)D + 7wR, where 0 < 7 < 1 is a parameter that
controls how fast D is updated, w is a scaling parameter, and R is a diagonal
matrix containing the absolute value of successfully implemented steps, that
is R = |Dul|. Following Parks (2010), the values of 7 and w are set to 0.1

46The following outline also draws strongly upon Parks (2010).
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Figure 12: Simulated Annealing Algorithm

and 2.1, respectively.

Since the stepsize is flexibly adjusting to the functions’ topography, the
acceptance probability for uphill movements, that is increasing function val-
ues, needs to take this into account and is calculated following Equation

16
Sft

rob=-exp | ——— |, 16
p Z ( T ) (16)
where d is the average step size, that is, d = >, |Dyrug|, and 5f* is the

increase in the loss function at the updated vector of control variables.
Following Kirkpatrick, Gelatt, and Vecchi (1983) the initial temperature
is set such that the average probability of a function increase equals 0.8. The
initial temperature, Ty, can be found via an initial search with the initial
stepsize set to 1, with all function changes being accepted, and then applying
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Equation 17 ~
Sft
To= In(0.8)’ (7)
where § fT is the average positive change in the loss function during the initial
search’s Markov chain.

The maximum length of one Markov chain is set such that the search,
given the initial step size theoretically can pace several times through the
whole search space deemed realistical for the problem at hand, which in this
application is set to be a cube with side length 2x A, with A the inital assets of
banks in the model.*” In this application, with the initial maximum stepsize
set to 1, the length of the Markov chain is set to fifty times the searchspace’s
volume divided by the initial maximum stepsize, that is (2 - A)® - 50 = 400.
Clearly, the length of the Markov chain is a relatively arbitrary parameter.
Setting its length too short can result in the system freezing prematurely,
that is, getting stuck in a local optimum. Setting it too long can result in
unnecessarily long computation time. In practice, the adequacy of the length
of the Markov chain for the function to be minimized can be evaluated via
taking out several optimizations with different starting values to cross-check
whether they lead to the same optimal solution, also when taking random
starting values.*®

After a Markov chain of new random solutions has been completed the
temperature is adjusted following an adaptive approach from Huang, Romeo,
and Sangiovanni-Vincentelli (1986) where the temperature is decremented
following Equation 18

Ty1 = v - T, (18)
and ¢ is given by Equation 19

7T
Ly = mazx {0.5, exp (—O ’ k) } , (19)
Ok

where o}, is the standard deviation of the loss function values that have
been accepted during the Markov chain at temperature 7. Note that the

4"Note that the algorithm theoretically can explore far beyond this limit since the
stepsize is adjusting freely to the necessary length. As robustness check totally unrealistic
starting values of up to 1000 - A have been chosen, always resulting in the same optimal
solution, though eventually taking a long time to compute.

48Note that no matter which length the Markov chain is assigned, it is very unlikely
to end up at exactly the same solution in each optimization given the heuristic nature of
the algorithm. However, same solutions can be characterized as being in the same close
neighborhood.
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Markov chain is interrupted before its maximal length has been reached if
the number of accepted random draws along the Markov chain equals 60%
of the length of the Markov chain.

After the temperature has been decreased or at the beginning of the opti-
mization procedure, the actual optimal value as well as stepsize and temper-
ature are given to ¢ parallel Markovian processes, where ¢ is the number of
CPUs used for parallel computing. Each process then optimizes the Markov
chain along the lines outlined above until it is completed or interrupted be-
cause the number of accepted draws attained 60%. Next, the best solution
as well as the according temperature and stepsize of these sub-optimizations
from the parallel Markov chains are taken as new best value for the parallel
optimization and given again as input to q parallel Markovian processes.

The algorithm terminates when the number of accepted changes in the
entire optimal Markov chain is zero.
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