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1 Introduction

The availability and increasing importance of high-frequency data in empirical finance

and financial practice has triggered the development of new types of econometric models

capturing the specific properties of these observations. Typical features of financial data

observed on high frequencies are strong serial dependencies, irregular spacing in time,

price discreteness and the non-negativity of various (trading) variables. To account for

these properties, models have been developed which contain features of both time series

approaches and microeconometric specifications, see, e.g., Engle and Russell (1998),

Russell and Engle (2005) or Rydberg and Shephard (2003), among others.

This paper proposes a novel type of model capturing a further important property

of high-frequency data which is present in many situations but not taken into account in

extant approaches: the occurrence of a non-trivial part of zeros in the data – henceforth

referred to as ”excess zeros” – which is a typical phenomenon particularly in the context

of high-frequency time aggregates (e.g., 15 sec or 30 sec data). In high-frequency trading,

this type of data is widely used and generally preferred to tick-by-tick level data as it

dispenses with certain pitfalls in econometric modeling, such as the irregular spacing

of time spells. However, measures of trading activity within short intervals, such as

cumulated trading volumes, naturally reveal a high proportion of zero observations.

This is even true for liquid stocks, since there is always a significant proportion of

intervals with no trading. It should be stressed that such zero clustering effects will

also not be mitigated by a further increase of market liquidity over time, as in that

case, correspondingly higher frequencies of trading decisions naturally result also in

smaller aggregation intervals. As a representative illustration, Figure 1 depicts the

empirical distribution of cumulated trading volumes per 15 seconds of the McDermott

stock traded at the New York Stock Exchange (NYSE). No-trade intervals amount to a

proportion of about 50%, leading to a significant spike at the leftmost bin.

The occurrence of such high proportions of zero observations can not be appropriately

captured by any standard distribution for non-negative random variables, such as the

exponential distribution, generalizations thereof as well as various types of truncated
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Figure 1: Histogram of 15 Sec Cumulated Volumes of the McDermott Stock
(NYSE), July 2009

models (c.f. Johnson et al., 1994). This has serious consequences in a dynamic framework,

as, e.g., in the multiplicative error model (MEM) introduced by Engle (2002) which

is commonly used to model positive-valued autocorrelated data. In such a framework,

employing distributions which do not explicitly account for excess zeros induces severe

distributional misspecifications causing inefficiency and in many cases even inconsistency

of parameter estimates. These misspecifications become even more evident when zero

occurrences – and thus (no) trading probabilities – follow their own dynamics. Moreover,

standard distributions are clearly inappropriate whenever density forecasts are in the

core of interest since they are not able to explicitly predict zero outcomes.

To the best of our knowledge, existent literature does not provide any systematic and

self-contained framework to model, test and predict serially-dependent positive-valued

data realizing a non-trivial part of excess zeros. Therefore, our main contributions can

be summarized as follows. First, we introduce a new type of discrete-continuous mixture

distribution capturing a clustering of observations at zero. The idea is to decompose

the distribution into a point-mass at zero and a flexible continuous distribution for

strictly positive values. Second, we propose a novel semiparametric density test, which

is tailored to distributions based on point-mass mixtures. Third, we employ the above

mixture distribution to specify a so-called zero-augmented MEM (ZA-MEM) that

allows for maximum likelihood estimation in the presence of zero observations. Finally,

we explicitly account for serial dependencies in zero occurrences by introducing an

augmented MEM structure which captures the probability of zeros based on a dynamic

binary choice component. The resulting so-called Dynamic ZA-MEM (DZA-MEM)

yields a specification which allows to explicitly predict zero outcomes and thus is able

to produce appropriate density forecasts.
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A zero augmented model is an important complement to current approaches which

reveal clear deficiencies and weaknesses in the presence of zeros. For instance, the quasi

log-likelihood function of a MEM based on a (standard) gamma distribution (see, e.g.,

Drost and Werker, 2004) cannot be evaluated in the case of zero observations. An

analogous argument holds for the log-normal distribution yielding QML estimates of

a logarithmic MEM (Allen et al., 2008). Consequently, the only feasible distribution

yielding QML estimates is the exponential distribution. The latter, however, is heavily

misspecified in cases as shown in Figure 1 and thus yields clearly inefficient parameter

estimates. This inefficiency can be harmful if a model is applied to time-aggregated

data and is estimated over comparably short (rolling) time intervals as, e.g., a day (for

instance, to be not affected by possible structural breaks). Moreover, using exponential

QML or the generalized methods of moments (GMM) as put forward by Brownlees et al.

(2010) does not allow to explicitly estimate (and thus to predict) point masses at zero.

Finally, from an economic viewpoint, no-trade intervals contain own-standing in-

formation. E.g., in the asymmetric information-based market microstructure model

by Easley and O’Hara (1992), the absence of a trade indicates lacking information in

the market. Indeed, the question whether to trade and (if yes) how much to trade

are separate decisions which do not necessarily imply that no-trade intervals can be

considered as the extreme case of low trading volumes. Consequently, the binary process

of no-trading might follow its own dynamics others than that of (non-zero) volumes.

This paper contributes to several strings of literature. First, it adds to the literature

on point-mass mixture distributions. An important distinguishing feature of the existing

specifications is whether the point-mass at zero is held constant (e.g., Weglarczyk et al.,

2005) or explained by a standard (static) binary-choice model (e.g., Duan et al., 1983).

We extend these approaches by allowing for a dynamic model for zero occurrences.

In an MEM context, De Luca and Gallo (2004) or Lanne (2006) employ mixtures of

continuous distributions which are typically motivated by economic arguments, such

as trader heterogeneity. The idea of employing a point-mass mixture distribution to

model zero values is only mentioned, but not applied, by Cipollini et al. (2006).

Second, our semiparametric specification test contributes to the class of kernel-based

specification tests, as e.g., proposed by Fan (1994), Fernandes and Grammig (2005)

or Hagmann and Scaillet (2007). None of the existing methods, however, is suitable

for distributions including a point-mass component. If applied to MEM residuals, our

approach also complements the literature on diagnostic tests for MEM specifications.

Third, since the proposed dynamic zero-augmented MEM comprises a MEM and

a dynamic binary-choice part, we also extend the literature on component models
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for high-frequency data, as, e.g., Rydberg and Shephard (2003) or Liesenfeld et al.

(2006), among others. While the latter focus on transaction price changes, our model

is applicable to various transaction characteristics, as it decomposes a (nonnegative)

persistent process into the dynamics of zero values and strictly positive realizations. For

instance, the approach can explain the trading probability in a first stage and, given

that a trade has occurred, models the corresponding cumulated volume.

A simple simulation study illustrates the efficiency gains of a ZA-MEM in contrast

to standard models which ignore zero effects. We apply the proposed model to 15

second cumulative volumes of two liquid and two illiquid stocks traded at the NYSE

which are representative for a wide range of the market universe. Using the developed

semiparametric specification test, we show that the ZA-MEM captures the distributional

properties of the data very well. Moreover, a density forecast analysis shows that the

novel type of MEM structure is successful in explaining the dynamics of zero values and

appropriately predicting the entire distribution. The best performance is shown for a

DZA-MEM specification where the zero outcomes are modeled using an autoregressive

conditional multinomial (ACM) model as proposed by Russell and Engle (2005). In

fact, we observe that trading probabilities are quite persistent following their own

dynamics. Our results show that the proposed model can serve as a workhorse for

modeling and prediction of various high-frequency variables and can be extended in

different directions.

The remainder of this paper is structured as follows. In Section 2, we introduce

a novel point-mass mixture distribution and develop a corresponding semiparametric

specification test which is applied to evaluate the goodness-of-fit based on MEM residuals.

Section 3 presents the dynamic zero-augmented MEM capturing serial dependencies in

zero occurrences. We evaluate the extended model by examining in- and out-of-sample

forecasts of conditional densities. Finally, Section 4 concludes.

2 A Discrete-Continuous Mixture Distribution

2.1 Data and Motivation

We analyze high-frequency trading volume data for the four stocks Bank of America

(BAC), International Business Machines (IBM), McDermott International (MDR) and

Cimarex Energy (XEC), which are traded at the New York Stock Exchange. In terms of

trading frequency and liquidity these assets are representative for a wide range of stocks

in the market. The transaction data is extracted from the Trade and Quote (TAQ)

database released by the NYSE and covers a representative trading week from July
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2.1: BAC 2.2: IBM

2.3: MDR 2.4: XEC

Figure 2: Sample Histograms of Deseasonalized Cumulated Volumes

27 to 31, 2009. We filter the raw data by deleting transactions that occurred outside

regular trading hours from 9:30 am to 4:00 pm. The tick-by-tick data is aggregated

by computing cumulated trading volumes over 15 second intervals, resulting in 7795

observations for the four stocks. Modeling and forecasting cumulated volumes on high

frequencies is, for instance, crucial for algorithmic trading strategies, see, e.g., Brownlees

et al. (2010). To account for the well-known intraday seasonalities (see, e.g., Hautsch

(2004) for an overview), we divide the cumulated volumes by a seasonality component

which is pre-estimated employing a cubic spline function.

An important feature of the data is the high number of zeros induced by non-trading

intervals. The summary statistics in Table 1 and the histograms depicted in Figure

2 report a non-trivial share of zero observations ranging from about 9% for BAC to

almost 60% for MDR.
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Table 1: Summary Statistics of Cumulated Trading Volumes
All statistics are reported for the raw and seasonally adjusted time series. SD: standard
deviation, q5 and q95: 5%- and 95%-quantile, respectively. nz/n: share of zero observations.
Q(l): Ljung-Box statistic associated with l lags. The 5% (1%) critical values associated with
lag lengths 20, 50 and 100 are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81), respectively.

BAC IBM

Raw Adj. Raw Adj.

Obs 7795 7795 7795 7795
Mean 16612.7 1.02 651.8 1.01
SD 31384.9 1.57 1381.6 1.91
q5 0 0.00 0 0.00
q95 61800 3.76 2800 3.85

nz/n 0.092 0.092 0.263 0.263

Q(20) 10714.52 1658.86 8614.27 864.52
Q(50) 17681.48 2160.17 14431.50 1310.42
Q(100) 24795.88 2477.98 17773.13 1575.16

MDR XEC

Raw Adj. Raw Adj.

Obs 7795 7795 7795 7795
Mean 215.2 1.01 163.45 1.01
SD 683.1 3.34 440.88 2.13
q5 0 0 0 0
q95 900 4.44 700 4.26

nz/n 0.582 0.582 0.506 0.506

Q(20) 3277.38 384.73 3008.03 1118.00
Q(50) 4769.92 576.79 4893.87 1615.18
Q(100) 6002.79 637.50 5947.61 1891.64
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3.1: BAC 3.2: IBM

3.3: MDR 3.4: XEC

Figure 3: Sample Autocorrelograms
Sample autocorrelation functions of raw (grey line) and diurnally adjusted (black line) cumulated
trading volumes. Horizontal lines indicate the limits of 95% confidence intervals (±1.96/

√
n).

A further major feature of cumulated volumes is their strong autocorrelation and

high persistence as documented by the Q-statistics in Table 1 and the autocorrelation

functions (ACFs) displayed in Figure 3.

To account for these strong empirical features, we first propose a distribution

capturing the phenomenon of excess zeros and, secondly, implement it in a MEM

setting.

2.2 A Zero-Augmented Distribution for Non-Negative Variables

We consider a non-negative random variable X with independent observations {Xt}nt=1,

corresponding, e.g., to the residuals of an estimated time series model. In the presence

of zero observations, a natural choice is the exponential distribution as it is also defined
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for zero outcomes and, as a member of the standard gamma family, provides consistent

QML estimates of the underlying conditional mean function (e.g., specified as a MEM).

However, in case of high proportions of zero realizations (as documented in Section 2.1),

this distribution is severely misspecified making QML estimation quite inefficient.

To account for excess zeros we assign a discrete probability mass to the exact zero

value. Hence, we define the probabilities

π := P (X > 0) , 1− π := P (X = 0) . (1)

Conditional on X > 0, X follows a continuous distribution with density gX(x) :=

fX(x|X > 0), which is continuous for x ∈ (0,∞). Consequently, the unconditional

distribution of X is semicontinuous with a discontinuity at zero, implying the density

fX(x) = (1− π) δ(x) + π gX(x) 1I(x>0), (2)

where 0 ≤ π ≤ 1, δ(x) is a point probability mass at x = 0, while 1I(x>0) denotes an

indicator function taking the value 1 for x > 0 and 0 else. The probability π is treated

as a parameter of the distribution determining how much probability mass is assigned

to the strictly positive part of the support. Note that the above point-mass mixture

assumes zero values to be “true” zeros, i.e., they originate from another source than

the continuous component and do not result from truncation. This assumption is valid,

e.g., in case of cumulative trading volumes, where zero values correspond to non-trade

intervals and originate from the decision whether or whether not to trade.

The log-likelihood function implied by the mixture density (2) is

L (ϑ) = nz ln (1− π) + nnz lnπ +
∑
t∈Inz

ln gX(xt;ϑ
g), (3)

where ϑ = (π, ϑg)′, ϑg denotes the vector of parameters determining gX , Inz indicates

the set of all subscripts t associated with nonzero observations xt, while nz and nnz

denote the number of zero and nonzero observations, respectively. If no dependencies

between π and ϑg are introduced, componentwise estimation is possible and the estimate

of π is given by the empirical frequency of zero observations.

The conditional density gX(x) can be specified according to any distribution defined

on positive support. We consider the generalized F (GF) distribution, since it nests most

of the distributions frequently used in high-frequency applications (see, e.g., Hautsch,
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2003). The corresponding conditional density is given by

gX(x) =
a xam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
, (4)

where a > 0,m > 0, η > 0 and λ > 0. B(·) describes the full Beta function with

B(m, η) := Γ(m)Γ(η)
Γ(m+η) . The conditional noncentral moments implied by the GF distribution

are

E[Xs|X > 0] = λs ηs/a
Γ(m+ s/a) Γ(η − s/a)

Γ(m) Γ(η)
; a η > s. (5)

Accordingly, the distribution is based on three shape parameters a, m and η, as well as

a scale parameter λ. The support of the GF distribution includes the exact zero only if

the parameters satisfy the condition am ≥ 1 with the limiting case of an exponential

distribution. A detailed discussion of special cases and density shapes implied by

different parameter values can be found, e.g., in Lancaster (1997).

The unconditional density of the zero-augmented generalized F (ZAF) distribution

follows from (2) and (4) as

fX(x) = (1− π) δ(x) + π
axam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
1I(x>0), (6)

which reduces to the GF density for π = 1. The unconditional moments can be obtained

by exploiting eq. (5), i.e.,

E[Xs] = π E[Xs|X > 0] + (1− π) E[Xs|X = 0] ,

= π λs ηs/a
Γ(m+ s/a) Γ(η − s/a)

Γ(m) Γ(η)
; a η > s. (7)

The log-likelihood function of the ZAF distribution is given by

L (ϑ) = nz ln (1− π) + nnz lnπ +
∑
t∈Inz

{
ln a+ (am− 1) lnxt + η ln η (8)

− (η +m) ln
{
η +

[
xt λ

−1
]a}− lnB(m, η)− am lnλ

}
,

where ϑ = (π, a,m, η, λ)′.
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2.3 A New Semiparametric Specification Test

To perform model diagnostics, we introduce a specification test that is tailored to point-

mass mixture distributions on nonnegative support like (2). Instead of, e.g., checking a

number of moment conditions, we consider a kernel-based semiparametric approach,

which allows to formally examine whether the entire distribution is correctly specified.

Compared to similar smoothing specification tests for densities with left-bounded

support, as, e.g., proposed by Fernandes and Grammig (2005) and Hagmann and

Scaillet (2007), the assumption of a point-mass mixture under the null and alternative

hypothesis is a novelty. Estimation in our procedure is optimized for densities which

are locally concave for small positive values as described in Section 2.1.

In this setting, an appropriate semiparametric benchmark estimator for the uncon-

ditional density fX(x) must have the point mass mixture structure as in (2). Since the

support of the discrete and continuous component is disjoint, we can estimate both

parts separately without further functional form assumptions. In particular, we use the

empirical frequency π̂ = n−1
∑

t 1I(xt>0) as an estimate for the probability X > 0. The

conditional density gX is estimated using a nonparametric kernel smoother

ĝX(x) =
1

nnzb

∑
t∈Inz

Kx,b (Xt) , (9)

where K is a kernel function integrating to unity. The estimator is generally consistent

on unbounded support for bandwidth choices b = O(n−ν) with ν < 1. Though, if

the support of the density is bounded, in our case from below at zero, standard fixed

kernel estimators assign weight outside the support at points close to zero and therefore

yield inconsistent results at points near the boundary. Thus instead, we consider a

gamma kernel estimator as proposed in Chen (2000) whose flexible form ensures that

it is boundary bias free, while density estimates are always nonnegative. This is in

contrast to boundary correction methods for fixed kernels such as boundary kernels

(Jones, 1993) or local-linear estimation (Cheng et al., 1997). The asymmetric gamma

kernel is defined on the positive real line and is based on the density of the gamma

distribution with shape parameter x/b+ 1 and scale parameter b

Kγ
x/b+1,b (u) =

ux/b exp(−u/b)

bx/b Γ(x/b+ 1)
. (10)

For the final standard gamma kernel estimator, set Kx,b (Xt) = Kγ
x/b+1,b (Xt) in (9).

Note that if the density is locally concave near zero, it is statistically favorable to
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employ the standard gamma kernel (10) and not the modified version as proposed in

Chen (2000) or other boundary correction techniques such as reflection methods (e.g.

Schuster, 1958) or cut-and-normalized kernels (Gasser and Müller, 1979). In this case,

signs of first and second derivative of the density in this region are opposed causing

the leading term of the vanishing bias of the standard gamma kernel estimator to be of

smaller absolute value than the pure second derivative in the corresponding term for the

modified estimator and the other estimators (see Zhang (2010) for details). With the

same logic, however, the opposite is true for locally convex densities near zero, as for,

e.g., income distributions (Hagmann and Scaillet, 2007), which we do not consider here.

While for estimation at points further away from the boundary the variance of

gamma kernel estimators is smaller compared to symmetric fixed kernels, their finite

sample bias is generally larger. We therefore apply a semiparametric correction factor

technique as in Hjort and Glad (1995) or Hagmann and Scaillet (2007) to enhance the

precision of the gamma kernel estimator in the interior of the support. This approach

is semiparametric in the sense that the unknown density gX(x) is decomposed as the

product of the initial parametric model gX
(
x, ϑ

)
and a factor r(x) which corrects for

the potentially misspecified parametric start. The estimate of the parametric start is

given by gX
(
x, ϑ̂

)
, where ϑ̂ is the maximum likelihood estimator. The correction factor

is estimated by kernel smoothing, such that r̂(x) = 1
nnz

∑
t∈Inz

Kx/b+1,b (xt) /gX
(
Xt, ϑ̂

)
.

Therefore, the bias-corrected gamma kernel estimator is

g̃X(x) =
1

nnzb

∑
t∈Inz

Kγ
x/b+1,b (Xt)

gX
(
x, ϑ̂

)
gX

(
Xt, ϑ̂

) , (11)

which reduces to the uncorrected estimator if the uniform density is chosen as the initial

model. Hjort and Glad (1995) show that a corrected kernel estimator yields a smaller

bias than its uncorrected counterpart, whenever the correction function is less “rough”

then the original density. Their proof is valid for fixed symmetric kernels, but the

argument also holds true for gamma-type kernels with slightly modified calculations.

The formal test of the parametric model fX
(
x, ϑ

)
against the semiparametric alter-

native fX(x) measures discrepancies in squared distances integrated over the support.

As the discrete parts coincide in both cases, it is based on

I = π

∫ ∞

0

{
gX(x)− gX

(
x, ϑ

)}2
dx, (12)

12



where gx(x) and gX
(
x, ϑ

)
denote the general and parametric conditional densities

respectively. The null and alternative hypothesis are

H0 : P
{
f̂X(x) = fX

(
x, ϑ̂

)}
= 1 H1 : P

{
f̂X(x) = fX

(
x, ϑ̂

)}
< 1, (13)

where f̂x(x) and fX
(
x, ϑ̂

)
are the semiparametric and parametric density estimates with

respective continuous conditional parts gX
(
x, ϑ̂

)
and g̃X(x) as in (11). The feasible test

statistic is given by

Tn = nnz

√
b π̂

∫ ∞

0

{
g̃X(x)− gX

(
x, ϑ̂

)}2
dx. (14)

Asymptotic normality of Tn could be shown using the results of Fernandes and Monteiro

(2005). However, it is well-documented that non- and semiparametric tests suffer from

size distortions in finite samples (e.g. Fan, 1998). Therefore, we employ a bootstrap

procedure as in Fan (1998) to compute size-corrected p-values. This is outlined in detail

in the following subsection in the framework of a MEM.

We choose the bandwidth b according to least squares cross-validation, which is fully

data-driven and automatic. Thus, for the bias-corrected gamma kernel estimator (11)

the bandwidth b must minimize

CV (b) =
1

n2
nz

∑
i∈Inz

∑
j∈Inz

1

gX
(
xi, ϑ̂

)
gX

(
xj , ϑ̂

) ∫ ∞

0
gX

(
x, ϑ̂

)2
Kγ

x/b+1,b (xi) K
γ
x/b+1,b (xj) dx

− 2

nnz (nnz − 1)

∑
i∈Inz

∑
j �=i∈Inz

Kγ
xi/b+1,b (xj)

gX
(
xi, ϑ̂(i)

)
gX

(
xj , ϑ̂(i)

) , (15)

where ϑ̂(i) denotes the maximum likelihood estimate computed without observation Xi.

The cross-validation objective function is directly derived from requiring the bandwidth

to minimize the integrated squared distance between the semiparametric and parametric

estimates. For the uncorrected gamma kernel estimator, the corresponding objective

function is analogous to (15), but does not involve density terms.

Our test differs from related methods not only by being designed for point-mass mix-

tures. Fan (1994) uses fixed kernels with the respective boundary consistency problems.

Fully nonparametric (uncorrected) gamma kernel-based tests as Fernandes and Grammig

(2005) have a larger finite sample bias near the boundary for locally concave densities

and generally also in the interior of the support. The semiparametric test of Hagmann

and Scaillet (2007) suffers from the same problem near zero. Furthermore, weighting

with the inverse of the parametric density in their test statistic yields a particularly
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poor fit in regions with sparse probability, which is an issue in our application, as the

distributions are heavily right-skewed.

2.4 Empirical Evidence: Testing a Zero-Augmented MEM

To apply the proposed specification test to our data, we have to appropriately capture

the serial dependence in cumulated volumes. This task is performed by specifying a

multiplicative error model (MEM) based on a zero-augmented distribution. Accordingly,

cumulated volumes, yt, are given by

yt = μt εt, εt ∼ i.i.d. D(1) , (16)

where μt denotes the conditional mean given the information set Ft−1, while εt is a

disturbance following a distribution D(1) with nonnegative support and E[εt] = 1. A

deeper discussion of the properties of MEMs is given by Engle (2002) or Engle and Gallo

(2006). We specify μt in terms of a logarithmic specification as proposed by Bauwens

and Giot (2000) for autoregressive conditional duration (ACD) models which does not

require parameter constraints to ensure the positivity of μt. Accordingly, μt is given by

lnμt = ω +

p∑
i=1

αi ln εt−i 1I(yt−i>0) +

p∑
i=1

α0
i 1I(yt−i=0) +

q∑
i=1

βi lnμt−i, (17)

where the additional dummy variables prevent the computation of ln εt−i whenever

εt−i = 0. The lag structure is chosen according to the Schwartz information criterion

(SIC). For more details on the properties of the logarithmic MEM, we refer to Bauwens

and Giot (2000) and Bauwens et al. (2003). A survey of additional MEM specifications

is provided by Bauwens and Hautsch (2008).

Define the zero-augmented MEM (ZA-MEM) as a MEM where εt is distributed

according to the ZAF density (6) with scale parameter λ = (π ξ)−1 and

ξ := η1/a [Γ(m+ 1/a) Γ(η − 1/a)] [Γ(m) Γ(η)]−1 . (18)

Recalling (7), the constraint on λ ensures that the unit mean assumption for εt is fulfilled.

The MEM structure (16) implies that, conditionally on the information set Ft−1, yt

follows a ZAF distribution with λt = μt (π ξ)−1. Note that the latter constraint prevents

componentwise optimization of the corresponding log-likelihood and thus requires joint

estimation of all parameters.
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Table 2: Simulation Results - ZA-MEM vs. Exponential QML
Each data generating process is based on a zero-augmented Log-MEM with ω = 0.05, α = 0.05,
β = 0.9 and α0 = −0.005. For every replication, MEM parameters are estimated by ML based
on the ZAF distribution and by exponential QML. The study uses 1000 replications and a
sample size of 8000. SD denotes the standard deviation, RMSE is the root mean-square error.

ZA-MEM Exp. QML

ω̂ α̂ β̂ α̂0 ω̂ α̂ β̂ α̂0

DGP 1: a = 0.6, m = 100, η = 3.3, π = 0.9

Median 0.0510 0.0500 0.8990 -0.0048 0.0505 0.0508 0.8962 -0.0078
Mean 0.0512 0.0501 0.8977 -0.0047 0.0630 0.0529 0.8722 -0.0030
SD 0.0082 0.0061 0.0153 0.0169 0.0586 0.0220 0.1165 0.0697
RMSE 0.0082 0.0061 0.0154 0.0169 0.0600 0.0221 0.1198 0.0697

DGP 2: a = 0.6, m = 100, η = 3.3, π = 0.5

Median 0.0510 0.0505 0.8988 -0.0057 0.0552 0.0535 0.8892 -0.0076
Mean 0.0539 0.0506 0.8946 -0.0058 0.1021 0.0589 0.8155 -0.0052
SD 0.0212 0.0113 0.0327 0.0147 0.1662 0.0453 0.2407 0.0695
RMSE 0.0216 0.0113 0.0331 0.0147 0.1741 0.0462 0.2549 0.0695

DGP 3: a = 0.6, m = 1.9, η = 100, π = 0.9

Median 0.0504 0.0502 0.8987 -0.0039 0.0503 0.0501 0.8986 -0.0036
Mean 0.0507 0.0501 0.8981 -0.0045 0.0507 0.0503 0.8978 -0.0038
SD 0.0072 0.0057 0.0144 0.0220 0.0077 0.0061 0.0156 0.0231
RMSE 0.0072 0.0057 0.0146 0.0220 0.0077 0.0061 0.0158 0.0232

DGP 4: a = 0.6, m = 1.9, η = 100, π = 0.5

Median 0.0510 0.0499 0.8980 -0.0054 0.0511 0.0504 0.8970 -0.0038
Mean 0.0538 0.0505 0.8938 -0.0053 0.0552 0.0512 0.8895 -0.0033
SD 0.0210 0.0112 0.0332 0.0190 0.0306 0.0135 0.0498 0.0241
RMSE 0.0213 0.0112 0.0338 0.0190 0.0310 0.0135 0.0508 0.0241

To generate residuals ε̂t := yt/μ̂t which are consistent estimates of the errors εt,

we estimate the model by exponential QML. Alternatively, we could obtain consistent

error estimates using the semiparametric methods by Drost and Werker (2004) or

employing GMM as in Brownlees et al. (2010). The consistency and parametric rate of

convergence of the conditional mean estimates enable us to use the residuals as inputs

for the semiparametric specification test without affecting the asymptotics of the kernel

estimators discussed in Section 2.3. A similar procedure is applied by Fernandes and

Grammig (2005) for their nonparametric specification test.

To illustrate the inefficiency of parameter estimates based on an error distribution

which does not capture zero clustering effects, we conduct a simulation study. We
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Table 3: Estimation Results – ZA-MEM
Maximum likelihood estimates and t-statistics of the zero-augmented Log-MEM. Lag structure
is determined using the SIC.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.041 6.301 0.017 6.750 -0.028 -5.379 -0.023 -8.108
α1 0.118 8.808 0.187 13.757 0.091 9.259 0.130 6.554
α2 -0.060 -3.731 -0.119 -7.856 - - -0.066 -3.181
β1 0.913 64.253 0.930 135.281 0.938 116.017 0.953 206.477
α0
1 -0.315 -3.328 -0.162 -5.235 0.032 4.831 -0.013 -0.551

α0
2 0.291 3.171 0.144 4.640 - - 0.044 1.926

m 1.703 3.871 653.758 41.981 450.064 8.379 507.419 13.310
η 562.562 12.143 7.533 7.696 3.343 5.335 1.856 14.411
a 0.570 6.748 0.385 14.620 0.642 9.893 1.084 24.059
π 0.908 277.210 0.737 147.718 0.419 74.887 0.495 87.677

L -9335.306 -10850.092 -10452.980 -10917.378
SIC 18760.222 21789.796 20977.645 21924.368

consider four data-generating processes (DGPs) based on the above zero-augmented

MEM structure with parameters values chosen to replicate the stylized facts of the data.

For each of the 1000 simulated samples with 8000 observations, MEM parameters are

estimated both by maximum likelihood based on the ZAF distribution and by QML

based on the (misspecified) exponential distribution. Table 2 displays the simulation

results for the different scenarios. Despite the considerable sample size, the ML estimates

of the ZA-MEM consistently exhibit lower standard deviations and root mean squared

errors (RMSEs). The discrepancy in precision is more pronounced for DGPs with a larger

value of the shape parameter m of the ZAF distribution and a higher probability of zero

outcomes. The latter finding demonstrates the relationship between the magnitude of

zero clustering and the relative inefficiency of the exponential QML approach compared

to the ML estimator of the ZA-MEM.

Table 3 shows the maximum likelihood estimates of the ZA-MEM for the cumulated

volume data, while Figure 4 depicts the resulting parametric error densities together

with their semiparametric counterparts based on the uncorrected gamma kernel. For

all stocks, the parametric and semiparametric density are quite close to each other.

However, there is a noticeable discrepancy to the right of the boundary, which can

be explained by the increased bias of the gamma kernel compared to standard fixed

kernels in the interior of the support. To refine the semiparametric density estimate, we
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Table 4: Semiparametric Distribution Test
Results of the semiparametric specification test as proposed in Section 2.3 applied to the MEM
errors εt. The reported p-values are based on the empirical distribution of the test statistic
resulting from 1000 simulated bootstrap samples.

BAC IBM MDR XEC

Tn 0.298 0.818 1.404 1.308

P-Val. 0.208 0.164 0.990 0.972

employ the bias-corrected gamma kernel estimator (11), choosing the ZAF distribution

as parametric start. The plots in Figure 5 show that, in all cases, the discrepancy

between both estimates vanishes, as the parametric density now generally lies within

the 95%-confidence region of the semiparametric estimate.

The estimation results suggest that the ZAF distribution provides a superior way

to model MEM disturbances for cumulated volumes. This graphical intuition can

be formally assessed by the proposed semiparametric specification test (14). In the

MEM setting (16), we obtain applicable finite sample p-values employing the following

bootstrap procedure:

Step 1 : Draw a random sample {ε∗t }nt=1 from the parametric ZAF distribution with

density fε
(
ε, ϑ̂

)
, where ϑ̂ is the maximum likelihood estimate of the ZAF parameters ϑ

based on the original data ((8)). From this, generate a bootstrap sample {y∗t }nt=1 as

y∗t = μ̂t ε
∗
t , where μ̂t is the fitted conditional mean as in (17) based on the maximum

likelihood estimates from the original data.

Step 2 : Use {y∗t }nt=1 to compute the statistic Tn, which we denote as T ∗
n . This requires

the re-evaluation of both the parametric and semiparametric estimates of fε(ε).

Step 3 : Steps 1 and 2 are repeated B times and critical values are obtained from the

empirical distribution of
{
T ∗
n,r

}B

r=1
.

Table 4 displays the test results based on B = 1000 bootstrap replications for the

critical values. In all four cases, the statistic is insignificant at all conventional levels,

which implies that we cannot reject the null hypothesis (13). These results confirm

that the ZA-MEM is able to capture the distributional properties of high-frequency

cumulated volumes.
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4.1: BAC 4.2: IBM

4.3: MDR 4.4: XEC

Figure 4: Estimates of Error Density with Gamma KDE
The black solid line represents the error density implied by the ML estimates of the ZA-MEM.
The black dashed line is the semiparametric estimate based on the gamma kernel estimator. The
grey dashed lines are 95% confidence bounds of the kernel density estimator. LSCV bandwidths:
0.020 (BAC), 0.012 (IBM), 0.004 (MDR), 0.003 (XEC). Estimates of 1− π based on sample
percentage of zeros values: 0.092 (BAC), 0.263 (IBM), 0.582 (MDR), 0.506 (XEC).
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5.1: BAC 5.2: IBM

5.3: MDR 5.4: XEC

Figure 5: Estimates of Error Density with Corrected Gamma KDE
The black solid line represents the error density implied by the ML estimates of the ZA-MEM.
The black dashed line is the semiparametric estimate based on the bias-corrected gamma kernel
estimator. The grey dashed lines are 95% confidence bounds of the kernel density estimator.
LSCV bandwidths: 1.455 (BAC), 0.406 (IBM), 10578.031 (MDR), 1096.787 (XEC).
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Table 5: Runs Test for the Trade Indicator
Results of the two-sided runs test for serial dependence of the indicator for nonzero aggregated

volumes. Under the null of no serial dependence, the statistic Z = R−E(R)
V(R) (R: number of runs)

is asymptotically standard normal.

BAC IBM MDR XEC

Z -10.000 -13.832 -17.558 -17.015

P-Val. 0.000 0.000 0.000 0.000

3 Dynamic Zero-Augmented Multiplicative Error Models

3.1 Motivation

Assumption (1) implies that, conditional on past information, the trading probability is

constant or, more formally,

π := P (εt > 0|Ft−1) = P (yt > 0|Ft−1) = P (It = 1|Ft−1) , (19)

where It is a “trade indicator” taking the value 1 for yt > 0 and 0 else. The assumption

of constant no-trade probabilities is line with the seminal model of nonsynchronous

trading by Lo and MacKinlay (1990) but appears to be rather restrictive, as (non-zero)

cumulative volume is clearly time-varying and reveals persistent serial dependencies.

Moreover, it is at odds with the well-known empirical evidence of autocorrelated trading

intensities, see, e.g., Engle and Russell (1998). Table 5 shows the results of a simple

runs test based on the trade indicator It suggesting that the null hypothesis of no

serial correlation in no-trade probabilities is clearly rejected. To capture this effect, we

propose an augmented version of the ZA-MEM accounting also for dynamics in zero

occurrences.

3.2 A ZA-MEM with Dynamic Zero Probabilities

Assume that, given the information set Ft−1, the conditional probability of the distur-

bance εt being zero depends on a restricted information set Ht−1 ⊂ Ft−1. Moreover, πt

is assumed to depend on Ht−1 by a function π(·;ψ) with parameter vector ψ,

πt := P (εt > 0|Ft−1) = P (εt > 0|Ht−1) = π(Ht−1;ψ) . (20)

As a consequence of this assumption, the disturbances lose the i.i.d. property and,

conditionally on Ht−1, are independently but not identically distributed. Thus, the
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dynamics of the endogenous variable, yt, are not fully captured by the conditional mean

μt, as past information contained in Ht−1 affects the innovation distribution. Similar

generalizations of the MEM error structure have been considered, e.g., by Zhang et al.

(2001) or Drost and Werker (2004). The resulting dynamic zero-augmented MEM

(DZA-MEM) can be formally written as

yt = μt εt; εt|Ht−1 ∼ i.n.i.d. PMD(1) , (21)

where PMD(1) denotes a point-mass mixture as in (2) with assumption (1) replaced

by (20) and E[εt|Ht−1] = E[εt] = 1. Hence, the conditional density of εt given Ht−1 is

fε(εt|Ht−1) = (1− πt) δ(εt) + πt gε(εt|Ht−1) 1I(εt>0), (22)

where the conditional density for εt > 0, gε(εt|Ht−1), depends on Ht−1 through the

probability πt, as the unit mean assumption in (21) requires

κt := E[εt|εt > 0;Ht−1] = π−1
t , (23)

such that

E[εt] = E{E[εt|Ht−1]} = E[πt κt] = 1. (24)

Since the function π(·;ψ) is equivalent to a binary-choice specification for the trade

indicator It defined in (19), the log-likelihood of the DZA-MEM consists of a MEM

and a binary-choice part,

L(ϑ) =
n∑

t=1

{It lnπt + (1− It) ln (1− πt)}+
∑
t∈Inz

{ln fε(yt/μt|Ht−1;ϑ
g)− lnμt} ,

(25)

where ϑ = (ψ, ϑg, ϑμ)′ with ϑμ denoting the parameter vector of the conditional mean

μt. As in the previous section, a separate optimization of the two parts is infeasible,

since the constraint (23) implies that both components depend on the parameters of

the binary-choice specification, ψ.
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If we use the ZAF distribution as point-mass mixture PMD(1), we obtain the

conditional density of εt given Ht−1 as

fε(εt|Ht−1) = (1− πt) δ(εt) + πt
a εam−1

t [η + (εt πt ξ)
a](−η−m) ηη

(πt ξ)
−am B(m, η)

1I(εt>0), (26)

where we set λt = (πt ξ)
−1, with ξ defined as in (18), to meet the constraint (23). The

corresponding log-likelihood function is

L(ϑ) =
n∑

t=1

{It lnπt + (1− It) ln (1− πt)}+
∑
t∈Inz

{
log a+ (am− 1) ln yt (27)

− (η +m) ln

[
η +

(
yt
μt

πt ξ

)a]
+ η ln η − am ln

(
μt π

−1
t ξ−1

)− lnB(m, η)

}
,

where ϑ = (ψ, a,m, η, ϑμ)′.

3.3 Dynamic Models for the Trade Indicator

To allow the trade indicator It to follow a dynamic process, we propose two alternative

specifications: a parsimonious autologistic specification and a more flexible parameteri-

zation using autoregressive conditional multinomial (ACM) dynamics as proposed by

Russell and Engle (2005). By considering the general logistic link function

πt = π(Ht−1;ψ) =
exp(ht)

1 + exp(ht)
, (28)

the autologistic specification for ht = ln[πt/ (1− πt)] is given by

ht = θ0 +
l∑

i=1

θiΔt−i +
d∑

i=1

γi It−i, (29)

where Δt denotes an indicator for large values of the endogenous variable yt and is

defined as

Δt := max(yt − It, 0) . (30)

This type of transformation was suggested in a similar setting by Rydberg and Shephard

(2003) and accounts for the multicollinearity between the lags of yt and It. The

autologistic model has advantages in terms of tractability, such as the concavity of the

log-likelihood function, making numerical maximization straightforward. However, since

this process does not include a moving average component, it is not able to capture
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persistent dynamics in the binary sequence. Therefore, as an alternative specification,

we propose an ACM specification given by

ht = � +
v∑

j=1

ρj st−j +
w∑

j=1

ζj ht−j , (31)

where

st−j =
It−j − πt−j√
πt−j (1− πt−j)

(32)

denotes the standardized trade indicator. The process {st} is a martingale difference

sequence with zero mean and unit conditional variance, which implies that {ht} follows

an ARMA process driven by a weak white noise term. Consequently, {ht} is stationary

if all values of z satisfying 1− ζ1z − . . .− ζwz
w = 0 lie outside the unit circle. For more

details, see Russell and Engle (2005).

An appealing feature of the ACM specification in the given framework is its sim-

ilarity to a MEM. Actually, analogously to a MEM specification, it imposes a linear

autoregressive structure for the logistic transformation of the probability πt, which,

in turn, equals the conditional mean of the trade indicator It given the restricted

information set Ht−1, i.e., E [It|Ht−1].

The DZA-MEM dynamics can be straightforwardly extended by covariates which

allow to test specific market microstructure hypotheses. Moreover, a further natural

extension of the DZA-MEM is to allow for dynamic interaction effects between the

conditional mean of yt, μt, and the probability of zero values, πt. For instance, by

allowing for spillovers between both dynamic equations, the DZA-MEM can be modified

as

ht = � +
v∑

j=1

ρj st−j +
w∑

j=1

ζj ht−j +
m∑
j=1

τj μt−j , (33)

lnμt = ω +

p∑
i=1

αi ln εt−i 1I(yt−i>0) +

p∑
i=1

α0
i 1I(yt−i=0) +

q∑
i=1

βi lnμt−i +

n∑
i=1

�i πt−i.

In the resulting model, the intercepts � and ω are not identified without additional

restrictions, as, for instance, � = 0. Alternatively, or additionally, dynamic spillover

effects might be also modeled by the inclusion of the lagged endogenous variables of the

two equations, see, e.g., Russell and Engle (2005) in an ACD-ACM context.
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3.4 Empirical Evidence on DZA-MEM Processes

We apply a DZA-MEM by parameterizing the conditional mean function μt based on

the Log-MEM specification (17). The lag orders in both dynamic components are chosen

according to the Schwarz information criterion. Table 6 shows the estimation results

for the DZA-MEM with autologistic binary-choice component. For all stocks, the large

volume indicator Δt has a positive impact on the subsequent trading probability, but

only for IBM this effect is significant at a 5% level. However, the lagged trade indicators

are significantly positive in almost every case. Thus, trade occurrences are positively

autocorrelated, which is in line with empirical market microstructure research (see, e.g.,

Engle, 2000).

For every stock, all Q-statistics of the autologistic residuals

ut =
It − π̂t√
π̂t (1− π̂t)

(34)

are significant at the 5% level, showing that an autologistic specification does not

completely capture the dynamics and is too parsimonious.

As shown by Table 7, dynamic modeling of trade occurrences by an ACM specification

yields significantly lower Q-statistics. Hence, the ACM specification seems to fully

capture the serial dependence in the trade indicator series, with the parameter estimates

underlining the strong persistence in the process. For MDR, the smallest root of the

polynomial 1 − ζ1z − ζ2z
2 = 0 is not far outside the unit circle, while in the other

cases, the coefficient ζ1 is close to one, suggesting that the underlying process is very

persistent.

3.5 Evaluating the DZA-MEM: Density Forecasts

The evaluation of the DZA-MEM is complicated by the fact that the disturbances

are not i.i.d. In particular, the non-identical distribution makes an application of the

semiparametric specification test from Section 2.3 impossible. Moreover, since the

disturbances are not i.i.d. even given the restricted information set Ht−1, we cannot

employ a transformation that provides standardized i.i.d. innovations as in De Luca

and Zuccolotto (2006).

As an alternative, we examine one-step-ahead forecasts of the conditional density

of yt implied by the DZA-MEM, which we denote by ft|t−1(yt|Ft−1). To assess the

forecasting performance of our model, we employ evaluation methods as developed by

Diebold et al. (1998) and firstly applied to MEM-type models by Bauwens et al. (2004).
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Table 6: Estimation Results – DZA-MEM with Autologistic Component
Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with autologistic
specification for the binary choice component. The Q-statistics are based on the residuals of the
autologistic component. 5% (1%) critical values of the Q-statistics with 20, 50 and 100 lags
are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81), respectively. The autologistic residuals are
defined as:

ut =
It−π̂t√
π̂t (1−π̂t)

.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.047 6.522 0.036 8.104 0.044 6.067 0.005 1.577
α1 0.120 11.135 0.206 9.691 0.182 14.880 0.153 8.669
α2 -0.060 -4.407 -0.128 -5.685 - - -0.056 -3.039
β1 0.908 58.869 0.919 115.177 0.854 70.964 0.923 118.600
α0
1 -0.416 -6.146 -0.310 -3.895 -0.133 -8.873 -0.260 -7.412

α0
2 0.345 4.939 0.223 2.981 - - 0.218 6.058

m 1.755 10.270 653.760 4.193 450.064 11.143 507.708 9.435
η 562.562 8.006 7.719 22.007 5.393 13.260 2.729 14.331
a 0.560 17.809 0.378 52.429 0.493 24.486 0.862 25.311

θ0 -0.390 -1.748 -0.937 -4.780 -1.440 -30.669 -1.196 -22.787
θ1 0.080 1.788 0.087 2.987 0.009 1.430 0.021 1.550
γ1 0.697 5.971 0.456 5.755 0.453 10.860 0.525 10.599
γ2 0.591 5.313 0.217 3.743 0.359 8.981 0.213 5.874
γ3 0.400 3.473 0.349 6.553 0.257 6.357 0.211 5.909
γ4 0.719 6.755 0.299 5.584 0.305 7.717 0.164 4.595
γ5 0.637 5.860 0.153 2.229 0.263 6.715 0.120 3.501
γ6 - - 0.115 1.227 0.154 3.942 0.209 5.959
γ7 - - 0.194 3.424 0.228 5.864 0.126 3.526
γ8 - - 0.177 2.446 0.259 6.599 0.209 5.875
γ9 - - 0.201 2.871 0.119 3.077 0.153 4.316
γ10 - - 0.164 1.912 0.203 5.184 0.125 3.596
γ11 - - 0.202 3.744 - - 0.133 3.652
γ12 - - 0.204 4.038 - - 0.210 6.009

L -9217.064 -10581.962 -10083.494 -10585.878
SIC 18577.504 21370.032 20337.240 21377.865

Q(20) 183.111 51.498 51.409 64.732
Q(50) 446.024 247.462 167.692 227.053
Q(100) 827.023 538.224 325.533 445.320
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Table 7: Estimation Results – DZA-MEM with ACM Component
Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with ACM
specification for the binary choice component. The Q-statistics are based on the residuals of the
ACM component. 5% (1%) critical values of the Q-statistics with 20, 50 and 100 lags are 31.41
(37.57), 67.51 (76.15) and 124.34 (135.81), respectively. The ACM residuals are defined as:

ut =
It−π̂t√
π̂t (1−π̂t)

.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.048 7.104 0.034 10.855 0.037 8.048 0.012 5.676
α1 0.117 10.416 0.186 12.419 0.107 10.055 0.130 7.914
α2 -0.059 -4.150 -0.122 -7.589 - - -0.063 -3.629
β1 0.913 65.588 0.935 157.746 0.925 97.593 0.950 210.962
α0
1 -0.371 -5.116 -0.290 -7.392 -0.092 -9.030 -0.215 -6.563

α0
2 0.272 3.574 0.199 5.054 - - 0.170 5.128

m 1.702 6.335 653.999 3.791 452.493 5.375 507.657 11.273
η 562.562 8.414 7.523 10.040 3.636 9.763 2.249 11.319
a 0.570 10.989 0.385 19.177 0.618 18.001 0.972 19.707

� 0.020 3.145 0.006 2.946 0.000 -0.855 0.001 0.574
ρ1 0.124 9.499 0.183 7.911 0.146 10.818 0.203 9.696
ρ2 - - -0.099 -4.325 -0.132 -9.907 -0.125 -5.945
ζ1 0.993 433.772 0.995 664.373 1.806 116.644 0.993 683.977
ζ2 - - - - -0.807 -51.669 - -

L -9117.095 -10475.223 -9969.811 -10453.388
SIC 18341.721 21066.941 20047.150 21023.271

Q(20) 42.761 34.602 37.773 16.338
Q(50) 78.670 55.415 75.476 33.972
Q(100) 137.010 104.017 114.527 97.845

One difficulty is that these methods are designed for continuous random variables, while

we have to deal with a discrete probability mass at zero. Therefore, following Liesenfeld

et al. (2006) and Brockwell (2007), we employ a modified version of the test. The idea

is to add random noise to the discrete component, ensuring that the c.d.f. is invertible.

Hence, we compute randomized probability integral transforms

zt =

{
Ut Ft|t−1(yt|Ft−1) if yt = 0,

Ft|t−1(yt|Ft−1) if yt > 0,
(35)
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Table 8: χ2-Test for Uniformity of In-Sample PITs
Results of the χ2-test for uniformity of the in-of-sample randomized probability integral trans-
forms based on the estimated DZA-ACM-MEM.

BAC IBM MDR XEC

χ2 35.300 26.006 12.757 28.674

P-Val. 0.013 0.130 0.851 0.071

where Ft|t−1(yt|Ft−1) denotes the c.d.f. corresponding to ft|t−1(yt|Ft−1), while Ut are

random variables with {Ut}nt=1 being i.i.d. U(0, 1). Using equation (22), we obtain

zt =

{
Ut (1− πt) if yt = 0,

(1− πt) + πtGt|t−1(yt/μt|Ht−1) if yt > 0,
(36)

where Gt|t−1(yt/μt|Ht−1) is the c.d.f. corresponding to gt|t−1(yt/μt|Ht−1), which denotes

the one-step-ahead forecast of the conditional density of the disturbance εt for εt > 0

evaluated at yt/μt. For a DZA-MEM based on the ZAF distribution, it follows that

zt =

{
Ut (1− πt) if yt = 0,

(1− πt) + πt [B(c ;m, η) /B(m, η)] if yt > 0,
(37)

where B(c ;m, η) :=
∫ c
0 tm−1 (1− t)η−1 dt is the incomplete beta function evaluated at

c :=
(
yt μ

−1
t πt ξ

)a [
η +

(
yt μ

−1
t πt ξ

)a]−1
. (38)

If the series of one-step-ahead forecasts, ft|t−1(yt|Ft−1), coincides with the true condi-

tional densities, fY (yt|Ft−1), the zt sequence is i.i.d. U(0, 1), see Brockwell (2007) for a

proof. While Diebold et al. (1998) recommend a visual inspection of the properties of

the zt’s, we also check for uniformity using Pearson’s χ2-test.

Table 8 shows the results of the χ2-test for uniformity of the in-sample randomized

probability integral transforms (PITs) implied by the DZA-ACM-MEM. The null

hypothesis of a uniform distribution cannot be rejected at a significance level of 5% in

three out of the four cases. For BAC, the χ2-statistic is insignificant at the 1% level,

which given the sample size, can be considered as an appropriate conservative level.

These findings are underlined by the histograms of the in-sample PITs depicted in

Figure 6. For all stocks, the PIT histogram implied by the DZA-ACM-MEM is close to

a uniform distribution, while almost none of the bars are outside the 95% confidence

region.
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6.1: BAC 6.2: IBM

6.3: MDR 6.4: XEC

Figure 6: Histograms of In-Sample PIT Sequences
Histograms of the in-sample randomized probability integral transforms based on the estimated
DZA-ACM-MEM. The dashed lines represent 95% confidence bounds.
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Table 9: χ2-Test for Uniformity of Out-Of-Sample PITs
Results of the χ2-test for uniformity of the out-of-sample randomized probability integral
transforms based on the estimated DZA-ACM-MEM. Two thirds of the entire sample are used
for estimation, one third for evaluation.

BAC IBM MDR XEC

χ2 21.661 16.845 12.218 12.797

P-Val. 0.301 0.600 0.876 0.849

In case of out-of-sample forecasts, model estimation is carried out using the first two

thirds of the dataset, while the one-step-ahead density predictions and PIT sequences

are computed for the last third of the sample. The results of the χ2-test for uniformity

of the out-of-sample PITs are given in Table 9. In all cases, the null of uniformity

cannot be rejected at any conventional level with the large p-values indicating a strong

density forecasting performance. The histograms of the out-of-sample PITs depicted in

Figure 7 confirm this result, as most bars are well within the 95% confidence bounds.

4 Conclusions

We propose a model for autoregressive positive-valued variables with excess zero out-

comes. These properties are typical for time-aggregated financial high-frequency data

and cannot be appropriately handled in extant approaches.

In order to capture observations clustered at zero, we introduce a new point-mass

mixture distribution, which consists of a discrete component at zero and a flexible

continuous distribution for the strictly positive part of the support. To evaluate such a

distribution, a novel semiparametric specification test tailored for point-mass mixture

distributions is introduced. Finally, to accommodate serial dependencies in the data we

incorporate the proposed point-mass mixture into a new type of multiplicative error

model (MEM) capturing the dynamics of both zero occurrences and strictly positive

values. In a simple simulation study, we demonstrate that in the presence of zero

observations, maximum likelihood estimation of the resulting zero-augmented MEM

(ZA-MEM) offers clear efficiency gains compared to exponential QML.

Empirical evidence based on cumulated trading volumes of four NYSE stocks shows

that the zero-augmented MEM on the basis of the proposed point-mass mixture captures

the distributional and dynamic properties of the data very well. The best fit is shown

for a specification incorporating a two-state ACM component for the trade indicator.
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7.1: BAC 7.2: IBM

7.3: MDR 7.4: XEC

Figure 7: Histograms of Out-Of-Sample PIT Sequences
Histograms of the out-of-sample randomized probability integral transforms based on the
estimated DZA-ACM-MEM. Two thirds of the entire sample are used for estimation, one third
for evaluation. The dashed lines represent 95% confidence bounds.

Besides MEM dynamics in trading volumes, the model also explains individual dynamics

in trade occurrences and produces good in- and out-of-sample density forecasts.

Further possible applications include the modelling of absolute returns revealing

a non-trivial proportion of zero outcomes or the modelling of irregularly-spaced high-

frequency data, where zero durations occur as a consequence of simultaneous transactions.

An alternative motivation for continuous-discrete mixture distributions is, for instance,

the clustering of trade sizes at round numbers, which is caused by the well-known

preference of traders for round lot sizes.

Finally, our modeling framework is sufficiently flexible to be extended in various ways,

e.g., to allow for dynamic spillovers between the two types of dynamics or incorporating

other exogenous regressors. Moreover, it should be straightforward to extend the model
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to a multivariate setting, in the spirit of, e.g. Manganelli (2005), Cipollini et al. (2006)

or Hautsch (2008). Here, the modeling of equidistant high-frequency data is particularly

useful as the regular sampling grid avoids the technical complications caused by the

asynchronicity of observations.
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