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Abstract

We introduce a copula-based dynamic model for multivariate processes of (non-negative)

high-frequency trading variables revealing time-varying conditional variances and correla-

tions. Modeling the variables’ conditional mean processes using a multiplicative error model

we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on

high-frequency volatility, cumulative trading volumes, trade counts and market depth of var-

ious stocks traded at the NYSE, we show that the proposed copula-based transformation

is supported by the data and allows capturing (multivariate) dynamics in higher order mo-

ments. The latter are modeled using a DCC-GARCH specification. We suggest estimating

the model by composite maximum likelihood which is sufficiently flexible to be applicable

in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances

in trading processes supports the usefulness of the approach. Taking these higher-order dy-

namics explicitly into account significantly improves the goodness-of-fit of the multiplica-

tive error model and allows capturing time-varying liquidity risks.
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risk
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1 Introduction

The modeling of intraday trading processes has become a major area in financial econometrics.

This is particularly triggered by technological progress on financial markets, changing institu-

tional structures in the trading landscape and a growing importance of intraday trading. The

availability of financial data on the lowest possible aggregation level opens up the possibility to

gain a deeper understanding of financial trading processes and to successfully manage trading

risks, trading costs and intraday price risks.

This paper contributes to the literature on multivariate models for trading processes. We

propose a model capturing trading dynamics not only in first conditional moments but also in

conditional (co-)variances. The latter reflect the time-varying uncertainty inherent in intraday

trading processes as well as dynamic correlation structures between key trading variables. The

major idea is to map innovations in non-negative dynamic processes into a Gaussian domain us-

ing a Gaussian copula. The innovations stem from a vector multiplicative error model (VMEM)

as proposed by Manganelli (2005) and Cipollini, Engle, and Gallo (2007). The copula-based

transformation of observations into a Gaussian domain allows identifying non-linear dependen-

cies between trading variables and yields a natural separation of (multivariate) dynamics in first

and second conditional moments. The latter are conveniently captured using dynamic conditional

correlation (DCC) models as proposed by Engle (2002a). The proposed approach is sufficiently

flexible to be applicable in high dimensions and can be extended in various directions.

Multiplicative error models (MEMs) – labeled according to Engle (2002b) – are workhorses

for the modeling of dynamic processes of non-negative random variables, such as trading vol-

umes, volatilities, trading intensities or market depth. The principle of decomposing a process

into the product of its conditional mean and a positive-valued error term is well known in the

literature and builds the backbone of the autoregressive conditional heteroscedasticity (ARCH)

model by Engle (1982) and the stochastic volatility (SV) model introduced by Taylor (1982).

In high-frequency econometrics, it has been put forward by Engle and Russell (1998) to model

the dynamics of trade-to-trade durations and has been referred to as autoregressive conditional

duration (ACD) model.1

A difficulty in the modeling of non-negative random variables is that typical distributions,

such as the exponential distribution or generalizations thereof, imply a direct relationship be-

tween all moments. Accordingly, a MEM process implies that higher order (conditional) mo-
1 See, e.g., Hautsch (2012) for an overview.
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ments follow the same dynamics which, however, is not necessarily supported by the data. To

address this problem, Ghysels, Gouriéroux, and Jasiak (1998) propose a two-factor model allow-

ing for separate dynamics of the conditional mean and the conditional variance. Their principle

is to rewrite an exponential model with gamma heterogeneity in terms of two Gaussian fac-

tors following a bi-variate dynamic process. Though this model accounts for features in trading

variables which are not captured by a basic MEM, it imposes (partly restrictive) distributional as-

sumptions and is hard to estimate. In a multivariate setting, the situation is even more complicate

as not only conditional variance dynamics but also time-varying correlation structures have to be

taken into account. However, finding a sufficiently flexible multivariate distribution defined on

positive support is a difficult task. As discussed by Cipollini, Engle, and Gallo (2007), a possible

candidate is a multivariate gamma distribution which however imposes severe restrictions on the

contemporaneous correlations between the variables.

This paper’s contribution is to capture higher-order dependence structures using a copula-

based decomposition of dynamics. Capturing conditional mean dynamics using a VMEM spec-

ification, the resulting residuals serve as serially uncorrelated innovations whose multivariate

distribution is modeled using a copula. Employing a Gaussian copula has two major advantages:

First, the copula allows to straightforwardly link the individual marginal distributions to an ap-

propriate joint distribution. Moreover, the imposed normality enables to naturally disentangle

first and second conditional moments. Furthermore, the mapping into a Gaussian domain al-

lows identifying non-linear (cross-)dependencies in trading processes which are not identifiable

using a basic (linear) VMEM. The dynamics in resulting transformed innovations are naturally

captured using (V)ARMA-GARCH and DCC-type specifications. This makes the model quite

flexible and applicable in high dimensions. Accordingly, we suggest a composite maximum

likelihood estimation procedure which is also feasible for high-dimensional processes.

We apply the model to 5-min squared mid-quote returns, cumulative trading volumes, trade

counts as well as market depth of different stocks traded at the New York Stock Exchange

(NYSE). We show that the Gaussian copula and thus the normality-induced separation between

first and second conditional moments is well supported by the data. It turns out that VMEM

innovations still reveal substantial dependencies in higher moments which are only identifiable

after the application of the Gaussian copula. It turns out that the explicit consideration of these

dependencies lead to a significantly better fit in terms of information criteria.

Our study shows that trading variables are subject to time-varying conditional variances re-

flecting liquidity and volatility risk. The processes are quite persistent and reveal positive cross-
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dependencies. Hence, uncertainty in volatility as well as liquidity demand and supply tends to

spill over from one variable to another. Moreover, we show that conditional correlations between

liquidity and volatility variables substantially vary over time. These insights are interesting from

a microstructure and trading perspective as they allow identifying periods where connections

between liquidity demand, liquidity supply and volatility are particularly high or low, respec-

tively. Residual diagnostics show that the proposed approach explains the multivariate dynamics

in trading processes clearly better than a basic (linear) VMEM specification.

The proposed copula-based dynamic conditional correlation MEM complements the exist-

ing literature on multiplicative error processes and the modeling of intraday trading. Various

aspects which have been addressed in extant literature can be included in our approach. For

instance, latent factor approaches in the spirit of Bauwens and Veredas (2004) and Hautsch

(2008), component MEMS, as proposed by Brownlees, Cipollini, and Gallo (2010) or Brownlees

and Vannucci (2010), long memory dynamics, as put forward by Jasiak (1998) and Karana-

sos (2004), or regime-switching MEMs as in Zhang, Russell, and Tsay (2001) or Meitz and

Teräsvirta (2006) could be easily included in the basic (V)MEM specification. Likewise, the in-

cluded DCC-GARCH component could be further extended by recent advances in the literature

on multivariate GARCH models (see, e.g., Bauwens, Laurent, and Rombouts (2006)). Finally,

our approach contributes to the empirical literature on dynamic copula models, see, e.g., Patton

(2001) and Patton (2006), or on copula-based multivariate GARCH processes as suggested by

Jondeau and Rockinger (2006), Lee and Long (2009) and Liu and Luger (2009). A study related

to ours is Cipollini, Engle, and Gallo (2007) who also suggest copulas in a (V)MEM setup but

proceed differently.

The remainder of the paper is organized as follows. Section 2 briefly reviews the basic vector

multiplicative error model. Section 3 introduces the new copula-based approach. In Section 4, we

provide an empirical application to the modeling of high-frequency trading processes. Finally,

Section 5 concludes.

2 The Basic Multiplicative Error Model

Let {Xt}, t = 1, ..., T , denote a non-negative valued random process and let Ft define the infor-

mation set up to time t. The basic univariate multiplicative error model (MEM), as introduced
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by Engle (2002b), is given by

Xt = µtεt ,

εt|Ft−1 ∼ i.i.d.D(1, σ2) ,

where {µt} is a non-negative random predictable process with respect to Ft−1 and represents

the conditional mean of Xt. The class of MEMs is quite general and nests various special cases.

For instance, Bollerslev’s (1986) generalized autoregressive conditional heteroscedasticity model

is obtained by letting Xt be the squared de-meaned log return Yt with µt being its conditional

variance, i.e., Y 2
t = µtε

2
t or, alternatively, Yt =

√
µtεt with εt|Ft−1 ∼ i.i.d.(0, 1). Another

important special case of the univariate MEM is the autoregressive conditional duration (ACD)

model proposed by Engle and Russell (1998), where Xt corresponds to a financial duration.

The conditional mean µt can be parameterized in various ways. In its most simple form, it

is specified as

µt = ω + α1Xt−1 + β1µt−1, (1)

corresponding to an ARMA(1,1) process for Xt with (martingale difference) error term Xt−µt.

Exploiting the analogy to a GARCH process, (univariate) MEMs can be extended in various

ways. For a recent overview, see Hautsch (2012).

Multivariately extending the MEM yields the so-called vector multiplicative error model

(VMEM) (see, e.g., Cipollini, Engle, and Gallo (2012))

Xt = µt � εt, (2)

where Xt := (X1,t, ...,XK,t)
′, µt := E[Xt|Ft−1] = (µ1,t, ...,µK,t)

′ is a K × 1 vector, ’�’

denotes the Hadamard product (element-wise multiplication) and εt is a K-dimensional vector

of mutually and serially i.i.d. innovation processes, where the j-th element is given by

εj,t|Ft−1 ∼ Dj(1, σ2j ). (3)

Manganelli (2005) suggests specifying µt as

µt = ω + A0Xt +
P∑
p=1

ApXt−p +

Q∑
q=1

Bqµt−q, (4)

where ω is a K-dimensional vector and A0, Ap, Bq are K ×K parameter matrices. The matrix

A0 captures the contemporaneous dependence of the elements of Xt and is specified as a matrix
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where only the upper triangular elements are non-zero. Consequently, Xi,t is predetermined for

all variables Xj,t, j < i, and is conditionally i.i.d. given {Xj,t,Ft−1}, j < i.

The disadvantage of this structure is the requirement of imposing an explicit ordering of

the variables in Xt induced by the triangular structure. The latter is not easy to justify in most

applications. Accordingly, mutual dependencies are likely to be misspecified. This problem

becomes even more severe when the dimension of the underlying process is high. An alternative

way to capture contemporaneous relationships is to allow for mutual correlations between the

innovation terms εi,t. Then, the innovation terms follow a density function which is defined over

non-negative K-dimensional support [0,+∞)K with unit mean ι and covariance matrix Σ, i.e.,

εt|Ft−1 ∼ i.i.d. D(ι,Σ)

implying

E [Xt|Ft−1] = µt,

V [Xt|Ft−1] = µtµ
′
t �Σ.

However, finding an appropriate distribution D is a difficult task. Typical distributions for

positive-valued random variables impose direct relationships between all moments. To break

up this dependence, Ghysels, Gouriéroux, and Jasiak (2004) propose a two-factor model which

allows estimating separate dynamics for the conditional variance of durations (’duration volatil-

ities’) leading to the so-called Stochastic Volatility Duration model. In a multivariate context,

the separation between first and second (conditional) moments is even more challenging. As dis-

cussed by Cipollini, Engle, and Gallo (2007), a possible candidate for D is a multivariate gamma

distribution which, however, imposes severe restrictions on the contemporaneous correlations

between the errors εj,t.

Below we propose a copula-based approach which (i) allows to separately model first and

second moments and (ii) is tractable and feasible even in high dimensions.

3 Copula-Based Dynamic Conditional Correlation Multiplicative Er-

ror Processes

3.1 The Model

The major idea is to find an appropriate transformation of εt which allows disentangling first and

second moments. Such a transformation step is in the spirit of Ghysels, Gouriéroux, and Jasiak
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(2004) who propose rewriting an exponential model with gamma heterogeneity in terms a two-

factor formulation based on Gaussian factors. The latter are individually modeled using standard

time series approaches. However, the disadvantage of the so-called Stochastic Volatility Duration

model is that it is computationally expensive and difficult to be generalized to a multivariate

setting.

As an alternative we suggest a transformation step which is computationally tractable (and

thus feasible for large data sets) and also easily applicable in high dimensions. The conditional

mean of Xt is specified according to a simplified version of (4),

Xt = µt � εt,

µt = ω +
P∑
p=1

ApXt−p +

Q∑
q=1

Bqµt−q, (5)

with the elements of εt being uncorrelated (but not independent). Note that (5) excludes contem-

poraneous dependencies between the elements of Xt (in contrast to (4)), as they are exclusively

captured by mutual dependencies in εj,t.

The major principle is to transform εt to the vector ε∗t and, then, to model the conditional

distribution of ε∗t using a Gaussian copula, i.e.,

ε∗t := (Φ−1(F1(ε1,t)), ...,Φ
−1(FK(εK,t)))

′, (6)

where Φ(.) denotes the c.d.f. of the univariate standard normal distribution and Fj(.) denotes the

marginal cumulative distribution function associated withDj . The assumption of the conditional

Gaussian copula implies that the transformed residuals ε∗t are by construction conditionally nor-

mally distributed,

ε∗t |Ft−1 ∼ N (µ∗t ,DtRtDt), (7)

with µ∗t denoting the conditional mean, Rt denoting the conditional correlation matrix and Dt

are K × K diagonal matrices with the conditional volatilities h1/2j,t , j = 1, . . .K, as diagonal

elements.

The transformation underlying the Gaussian copula can be interpreted as a mapping of an

observation Xt from the support of D1×D2× ....×DK on the support of the marginal c.d.f. of

a K-dimensional normal distribution with the respective quantiles being equal. The main ad-

vantage of the considered transformation is to allow modeling higher order moments of εi,t and

potential nonlinear dependence between εi,t and εj,t using the first two moments of ε∗t . Since

the transformation from εt to ε∗t is non-linear (though monotone), the series {ε∗t } as well as
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{ε∗2t } might be autocorrelated while the {εt} themselves are uncorrelated. The existence of

dynamics in ε∗t and ε∗2t indicate the presence of higher-order dynamics in εt which cannot be

captured by the plain MEM specification. Likewise, non-zero (conditional) correlations between

ε∗j,t, j = 1, . . . ,K, reflect the presence of (time-varying) mutual dependencies between MEM

errors.

Alternatively, the mapping might be not applied to MEM residuals but directly to the under-

lying observations Xi,t yielding Gaussian transformations X∗i,t whose first two (time-varying)

conditional moments might be parameterized accordingly. This approach, however, will produce

a class of nonlinear multivariate time series which is different from a VMEM process and is left

for further research. The question whether it is superior to map raw observations or MEM-filtered

observations is not easily answered on theoretical grounds and needs to be addressed empirically.

The current proceeding, however, has the advantage of (i) explicitly linking a MEM framework

to serial dependencies in higher order moments and, (ii) simultaneously yielding a diagnostic

tool to test for nonlinear dependencies which are not captured by MEM specifications.

As a result of the mapping into the Gaussian domain, time-variations in higher-order depen-

dencies can be conveniently captured by dynamic conditional variance and correlation processes

bringing well-known time series approaches into play. Indeed, such a modeling strategy is not

feasible if it is directly applied to εt as the amount of information presented in {εt} is not revealed

without appropriately transforming {εt}. The Gaussian copula induces a mapping of a distribu-

tion defined on R+ centered around one to a zero mean distribution with support R. Hence,

potential volatility clustering corresponding to serial correlations in ε∗2i,t is associated with serial

dependence in |εi,t − 1|, i = 1, . . . , n. Accordingly, clustering in (εi,t − 1)2 yields clustering in

ε∗2i,t and reflects high volatility in MEM residuals. Induced by the mapping of R+ to R and the

matching of corresponding quantiles, negative values of (εi,t − 1) are weighted more strongly

than positive ones. Clearly, the adequacy of the Gaussian copula applied to MEM residuals has to

be empirically validated by testing the joint conditional normality of ε∗t . Our empirical findings

below show that this assumption is well supported by typical high-frequency time series.

To capture possible dynamics in the first two conditional moments of ε∗t , we propose an
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VAR-(M)GARCH parameterization given by

ε∗t = µ∗t + ηt =:

Q∗∑
j=1

Cjε
∗
t−j + ηt, (8)

ηt =
√

ht � νt, (9)

ht = ωh +
Ph∑
j=1

Ah
j (ηt−j � ηt−j) +

Qh∑
j=1

Bh
jht−j , (10)

where Cj , Ah
j and Bh

j are non-singular K × K parameter matrices. Correspondingly, ht is a

K-vector of conditional variances hj,t, j = 1, . . . ,K, of ηt and νt is aK-vector with νt|Ft−1 ∼

N (0,Rt).

Obviously, hi,t is not the conditional variance of εi,t but the conditional variance of its projec-

tion into a Gaussian domain. Nevertheless, it can be seen as an approximation of the conditional

variance of εi,t reflecting normalized fluctuations around a mean. As the underlying transforma-

tion is monotonous and increasing, a higher (lower) volatility in the process {ε∗t } also indicates

a higher (lower) volatility in the process {εt}.

The conditional correlation matrix Rt is modeled according to Engle’s (2002a) Dynamic

Conditional Correlation (DCC) model and is given by

Rt = Q∗ −1t QtQ
∗ −1
t , (11)

Qt = (1−
PR∑
j=1

γj −
QR∑
j=1

δj)Q̄ +

PR∑
j=1

γjνt−jν
′
t−j +

QR∑
j=1

δjQt−j , (12)

where Q̄ is the unconditional covariance matrix of νt. As Rt is positive definite and the con-

ditional covariance matrix of ε∗t is obtained by DtRtDt with Dt being a diagonal matrix, the

resulting conditional covariance matrix of ε∗t is positive definite for all t.

The process {ε∗t } is weakly stationary if (i) all eigenvalues of the matrices
∑Q∗

j=1 Cj and∑Ph

j=1 Ah
j +

∑Qh

j=1 Bh
j have a modulus smaller than one, and (ii)

∑PR

j=1 γj +
∑QR

j=1 δj < 1.

These conditions ensure the weak stationarity of {ηt} and {ε∗t }. Weak stationarity of {εt} is

guaranteed by the existence of the first two moments of {εt} and the fact that the process {εt}

is obtained from {ε∗t } by applying a time-invariant transformation. Finally, the weak stationarity

of {Xt} is satisfied by the weak stationarity of {µt} requiring all eigenvalues of the matrix∑P
p=1 Ap +

∑Q
q=1 Bq having modulus smaller than one.
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Then, the conditional moments of Xt are given by

E[Xt|Ft−1] = µt,

V[Xj,t|Ft−1] = µ2j,tσ
2
j ,

Cov(Xi,t, Xj,t|Ft−1) = µi,tµj,tCov(εi,t, εj,t|Ft−1)

= µi,tµj,tCov(F−1i (Φ(ε∗i,t)), F
−1
j (Φ(ε∗j,t))|Ft−1)

Note that the last integral cannot be evaluated analytically but can be easily computed numeri-

cally.

3.2 Statistical Inference

The joint density of the εt’s is given by

fεt|Ft−1
(ε1;t, ..., εK;t) = φK(C(L)ε∗t ,DtRtDt; ε

∗
t )

K∏
j=1

fj(εj,t)

φ(Φ−1(Fj(εj,t)))
, (13)

where φK(µ,Σ; .) is the probability density function of the K-dimensional multivariate normal

distribution with mean vector µ and covariance matrix Σ, φ(.) denotes the density function of

the (univariate) standard normal distribution, fj(.) is the marginal density function of εj,t and

C(L) :=
∑Q∗

p=1 CpL
p with L representing the lag operator. From the transformations Xj,t =

µj,tεj,t with the Jacobian
∏k
j=1 µ

−1
j,t we can deduce the joint conditional density of Xt given

Ft−1,

fXt|Ft−1
(X1;t, ..., XK;t) = φK(C(L)qt,DtRtDt; qt)

K∏
j=1

µ−1j,t fj

(
Xj,t

µj,t

)
φ
(

Φ−1
(
Fj(

Xj,t

µj,t
)
)) , (14)

where qt :=
[
Φ−1

(
F1

(
X1,t

µ1,t

))
, ...,Φ−1

(
FK

(
XK,t

µK,t

)) ]′
.

Let θ denote the vector of parameters. Given the data matrix W, the log likelihood function

is calculated employing (14) and is given by

l(θ; W) =
T∑
t=1

K∑
j=1

ln

(
fj

(
Xj,t

µj,t

))
−

T∑
t=1

K∑
j=1

ln(µj,t)

+
T∑
t=1

ln(φK(C(L)qt,DtRtDt; qt))−
T∑
t=1

K∑
j=1

ln

[
φ

{
Φ−1

(
Fj

(
Xj,t

µj,t

))}]
= l0 + l1 , (15)

10



where

l0 :=

T∑
t=1

K∑
j=1

ln

(
fj

(
Xj,t

µj,t

))
−

T∑
t=1

K∑
j=1

ln(µj,t), (16)

l1 :=
T∑
t=1

ln(φK(C(L)qt,DtRtDt; qt))−
T∑
t=1

K∑
j=1

ln

[
φ

{
Φ−1

(
Fj

(
Xj,t

µj,t

))}]
. (17)

The structure of the likelihood function (15) motivates the application of a multi-step com-

posite likelihood procedure. Let the symbol vec denote the vec-operator and θ := (θ′0,θ
′
1)
′

with

θ0 := (ω′, vec(A1)
′, ..., vec(AP )′, vec(B1)

′, ..., vec(BQ)′)′

θ1 := (vec(C1)
′, ..., vec(CQ∗)

′,ω′h, vec(A
h
1)′, ..., vec(Ah

Ph)′, vec(Bh
1)′, ..., vec(Bh

Qh)′,

γ1, ..., γPR , δ1, ..., δQR)′

being the parameters of the plain VECM and VAR-(M)GARCH part of the model, respectively.

Accordingly, the likelihood function of the extended VECM process consists of K + 1 (con-

ditional) components. The first K components are specified by the conditional distribution of

each component of Xt given Ft−1 and are fully determined by the parameter vector θ0 and the

distribution functions Fj(.), j = 1, ...,K. The (K+ 1)-th component is given by the conditional

distribution of the VAR-(M)GARCH part, i.e., by the conditional distribution of qt, which is

a conditional normal distribution with conditional mean vector µ∗ = C(L)qt and conditional

covariance matrix DtRtDt. Using this presentation we adopt a two stage procedure. To com-

pute l0, we choose fj(.), j = 1, . . . ,K as the densities of (conditional) exponential distributions.

Accordingly, we have

l0 =
T∑
t=1

K∑
j=1

Xj,t

µj,t
−

T∑
t=1

K∑
j=1

log(µj,t) (18)

ignoring any constants. Maximizing l0 yields estimates of θ0. Exploiting the quasi-likelihood

property of the exponential distribution (see, e.g., Engle (2000)), θ0 and consequently first-stage

MEM residuals are consistently estimated. In the second stage, θ1 is estimated using MEM

residuals. The unknown distribution functions Fj(.) of εj,t are replaced by the rescaled univariate

marginal empirical distributions ÎF j = T
T+1 F̂j , where F̂j are the corresponding empirical distri-

bution functions of ε̂j,t. Then, the resulting residuals ε̂∗t = (Φ−1(F̂1(ε1,t)), ...,Φ
−1(F̂k(εk,t)))

′

are used to estimate θ1. Consequently,

l1 =

T∑
t=1

ln(φK(C(L)ε̂∗t ,DtRtDt; ε̂
∗
t )) (19)
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is maximized over θ1. Under some regularity conditions (see e.g. White (1996) and Engle

and Sheppard (2001)), it can be shown that the suggested two-stage estimator is consistent and

asymptotically normally distributed. For more details on composite likelihood approaches, see,

e.g., Lindsay (1988), Joe (1997), Joe (2005) or Ng, Joe, Karlis, and Liu (2011).

4 Modeling High-Frequency Volatility and Liquidity

4.1 Data

We apply the model to five stocks traded at the New York Stock Exchange (NYSE) in 2006. To

provide cross-sectional evidence across different liquidity classes, we choose the tickers AIG,

Citigroup, Boeing, ASH and AMR. AIG and Citigroup belong to the biggest financial and in-

surance companies in the U.S., Boeing is one of the biggest multinational aerospace and defense

companies, ASH represents Ashland Inc., a chemical and petroleum company while AMR Cor-

poration is an aviation and airline holding company. We apply the model to equi-distant data and

focus on 5-min aggregates. This allows analyzing a sufficiently long period (one year) without

facing too much computational burden. As the variables of interest, we choose a volatility proxy,

computed as the squared residual of an ARMA(1,1) regression of 5-min log mid-quote returns.

Alternatively, 5-min ranges as a volatility proxy might be used (see, e.g., Alizadeh, Brandt, and

Diebold (2002)) which qualitatively leads to similar results. Moreover, we use the cumulated

trading volume, the number of trades as well as the time-weighted average depth on the ask and

bid level. All variables are seasonally adjusted by standardizing them by a cubic spline sj,t,

j = 1, . . . ,K, based on 30-min nodes covering the trading day from 9:30 to 16:00. Table 1 in

the Appendix gives summary statistics of the underlying 5-min returns, scaled to an annual level,

cumulative trading volumes, number of trades and average first-level depth (in number of round

lots). We observe a high variability of returns which is becoming even higher in case of less

liquid assets. For instance, if the 5-min returns would be scaled to an annual level, we would

observe standard deviations of around 20. Substantial variations are also observed for cumula-

tive trading volumes which, however, are obviously driven by underlying lot sizes. In terms of

the number of trades, Citigroup and AIG are most intensively traded with on average approxi-

mately 45 trades per 5 minutes. Conversely, Boeing and AMR represent less liquid assets with on

average approximately 34 trades per interval while ASH reveals the lowest liquidity trading on

average 20 times per 5 minutes. As reflected by the Ljung-Box statistics, all series are strongly

autocorrelated suggesting a dynamic model.
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4.2 Estimation Results

We apply the model to the stock characteristics Xt with elements X1,t (volatility proxy, com-

puted as the squared residual of an ARMA(1,1) regression of 5-min log mid-quote returns),

X2,t (cumulative trading volumes), X3,t (number of trades), X4,t (average first-level depth) for

t = 1, ..., T . The estimates of the underlying VMEM specification are given in Table 3. The lag

orders are chosen using the Bayes Information Criterion (BIC) suggesting a VMEM(3,1) speci-

fication yielding the best fit. All processes are dominantly driven by their own histories implying

the diagonal elements of A1 being largest and most significant. Nevertheless, also significant

evidence for dynamic spill-overs between the individual variables is shown. We observe positive

intertemporal dependencies between volatility and liquidity demand, i.e., high volatilities induce

high trading volumes and trading intensities and vice versa. The same is true for the relationship

between cumulative trading volumes and the number of trades. This is not surprising as there

is an inherent link between cumulated volumes and the number of trades per time. Conversely,

liquidity supply – as reflected by the pending depth on the first level – is negatively linked to

volatility. Hence, in periods of high volatility, liquidity suppliers tend to reduce order aggres-

siveness and thus post less depth on the first level. This is in strong accordance with predictions

from market microstructure theory, see, e.g., Glosten (1994). In contrast, there is a positive in-

tertemporal relationship between liquidity supply and liquidity demand: A high liquidity demand

– reflected by high trading volumes – increases execution probabilities of limit orders and thus

rises liquidity suppliers’ willingness to post more depth. On the other hand, a higher liquidity

supply also triggers liquidity demand as the transaction costs of high volumes decline. Interest-

ingly, this link does not necessarily hold for the relationship between depth and the number of

trades which is negative in most cases. Hence, a high liquidity supply particularly triggers higher

trade sizes but not necessarily a higher speed of trading. Likewise, a higher trading intensity

tends to reduce first level depth. The estimates of Â2 and Â3 are negative reflecting some rever-

sal effects in subsequent periods. As reflected by B̂, the processes are very persistent which is

typical for high-frequency trading variables, see, e.g., Hautsch (2012). The Ljung-Box statistics

of the resulting MEM residuals ε̂t shown in Table 2 indicate that the specification captures the

dynamics quite well. We observe that the Ljung-Box statistics are strongly reduced compared to

the corresponding statistics for the raw data shown in Table 1.

However, while dependencies in first moments seem to be successfully captured by the

VMEM specification, dependencies in higher order moments are still present. This is reflected

by quite high Ljung-Box statistics based on the residuals ε̂∗t resulting from the Gaussian copula
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transformation (3.1). We observe that the mapping of MEM residuals into a Gaussian domain

reveals serial dependencies which are not captured by a (linear) VMEM specification for plain

variables. The presence of autocorrelations in transformed residuals provide hints on the exis-

tence of non-linearities in serial dependencies in trading characteristics. As the Gaussian copula

transformation induces a mapping from R+ to R and thus particularly affects small realizations

of ε̂∗t , the autocorrelations in these residuals are presumably driven by distinct dependencies in

unexpectedly small values of trading variables. These differences in dynamics of small and large

realizations of volatility and liquidity variables might be captured by a – presumably complicate

– non-linear VMEM specification for the trading variables directly. Nevertheless, even a highly

flexible non-linear VMEM specification is probably unable to explain the strong dependencies in

second moments of ε̂∗t as revealed by the corresponding Ljung-Box statistics.

Table 4 shows the estimates of the VAR specification (8) based on ε̂∗t . Note that the reported

standard errors do not explicitly account for the estimation errors in the previous stages. We

justify this proceeding by the high number of observations yielding quite precise estimates of

VMEM residuals and thus Fj .2 As suggested by the BIC and the Ljung-Box statistics of the

resulting residuals ηt (Table 2), three lags are sufficient to capture the autocorrelations in ε̂∗t .

We do not observe a particular dominance of dependencies on own histories but find that de-

pendencies across the different trading characteristics are equally important. Hence, the copula

transformation reveals evidence also for non-linear dependencies between the individual vari-

ables. However, the multivariate Ljung-Box statistics reported in Table 2 show that the VAR

models does successfully remove both autocorrelations and cross-autocorrelations in the series.

For some series (particularly trading intensities) the Ljung-Box statistics of squared resid-

uals ε̂∗2t and ε̂2t indicate even stronger dependencies in second moments than in first moments.

As discussed above, the latter are associated with conditional variances of (normalized) trading

variables and reflect the time-varying volatility of volatility and liquidity. These dynamics are

captured by the GARCH specification (10). The corresponding estimates based on fully speci-

fied matrices Ah
1 and Bh

1 of the lag order one are shown in Table 5. We find significant presence

of (G)ARCH effects. This is most strongly seen if only diagonal specifications are estimated3.

In the multivariate specification, however, these effects are overlaid by multi-collinearity effects

reducing the significance of the innovation parameter estimates. Nevertheless, as also revealed
2 Explicitly accounting for pre-stage estimation errors is analytically challenging but could be addressed numer-

ically using bootstraping techniques.
3 The results are not shown here.
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by the estimates of Bh
1 , we find significant evidence for positive volatility spill-overs between all

processes. Hence, the volatilities of volatility, liquidity demand and liquidity supply are cross-

correlated and moderately persistent over time. I.e., volatility shocks in liquidity demand – as

reflected by an unexpectedly high or low trading intensity or market depth – spill over to other

trading variables and increase uncertainty in liquidity supply and volatility and vice versa. These

are states of the market where trading risks are high and trading costs are hard to predict. The

reduction in Ljung-Box statistics of ν2t compared to those of ε̂2∗t (see Table 2) reflect that the

(M)GARCH specification is able to substantially reduce these dependencies.

Nevertheless, the fact that the Ljung-Box statistics based on ν2t are significant, reflects that

dynamics in second moments are still not completely captured asking for a presumably even

more flexible specification. Finally, as shown by the estimates of the DCC parameters, we find

significant evidence for dynamics in conditional correlations between (transformed) trading vari-

ables. Estimates of δ̂ being close to one indicate a high persistence in correlation processes –

very similar to that of daily asset return correlations. The residuals stemming from the DCC pro-

cess are computed based on the Cholesky transformation ν∗t = R
−1/2
t νt. Not surprisingly, the

Ljung-Box statistics of ν∗t are very similar to those of νt showing that dependencies in first mo-

ments are removed while slight dependencies in second moments are still present. Nevertheless,

it turns out that the DCC specification is successful in removing the mutual correlations between

the series. This is revealed by applying John’s test for zero mutual correlation based on the em-

pirical distance between the sample covariance matrix and a diagonal matrix (John (1971)). The

corresponding test statistic is given by

TJ =
1

K
tr

[(
S

(1/K)tr(S)
− I

)2
]
, (20)

where S is the sample covariance matrix based on the residual series. As shown by Ledoit and

Wolf (2002), the asymptotic (χ2) distribution of the test statistic is also valid if the cross-sectional

dimension K relative to the sample size T becomes high. Table 2 reports that the test statistics

are strongly reduced by the DCC specification.

To check the adequacy of the Gaussian copula, we test the normality of the residual series.

Testing each individual residual series for normality provides a first hint on the adequacy of the

Gaussian copula. Figure 1 depicts the kernel density estimates (using an Epanechnikov kernel

with optimal bandwidth) for all residual series {εt}, {ε∗t }, {ηt}, {νt}, {ν∗t } for the number of

trades in AIG trading. We compare the kernel density estimates with the density of a normal

distribution fitted to the corresponding series. Not surprisingly, for {εt}, the kernel density
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estimates significantly depart from the correspondingly fitted normal distribution. Conversely,

the distribution of {ε∗t } is visually hardly distinguishable from Gaussianity. The results are

representative for the other residual series as well as for all other stocks.

To formally test for normality, we apply a Kolmogorov-Smirnov test based on ν∗t . As shown

by Table 6, normality cannot be rejected for nearly all series. The only exception is observed for

the residual series stemming from trade counts where the assumption of normality is rejected in

four out of five cases. Nevertheless, overall empirical evidence strongly supports the normality

of transformed residuals and thus backs the usefulness of a Gaussian copula. To test for the joint

normality of the individual series, we test the distribution of the statistic

ξt = ν∗ 21,t + ν∗ 22,t + ν∗ 23,t + ν∗ 24,t

against a χ2-distribution with 4 degrees of freedom. Corresponding quantile-quantile (QQ)-

plots along with associated p-values of Kolmogorov-Smirnov statistics are depicted by Figure

2. The plots reveal close correspondance of theoretical and empirical quantiles for major parts

of the distributions. However, deviations are depicted for extreme observations in the right tails.

Consequently, joint normality of all series in form of a χ2
4 distribution for ξt cannot be rejected on

a 1% level only. This is presumably driven by deviations from Gaussianity for the series of trade

counts and very few extreme observations whose distributional properties are hard to capture.

Finally, Table 7 gives the values of the likelihood function and the Bayes Information Criteria

(BIC) for the basic and extended VMEM specifications. It turns out that the model’s goodness-

of-fit is clearly improved when dynamics in higher order moments are taken into account.

Figure 3 plots the estimated conditional variances ht and conditional correlations Rt of ηt
for the stock AIG. We observe significant short-term and long-term movements of conditional

variances over time. Induced by the positive spill-overs, we observe that the series tend to move

in lock-steps. This is particularly true for the volatilities of midquote volatility and of cumulative

trade sizes. As depicted by Figure 4, the conditional correlations between the individual series

reveal significant time variations as well. Not surprisingly, the highest (positive) correlations are

shown between cumulative volumes and and trade counts which are correlated by construction.

Likewise, positive mutual dependencies are identified between midquote volatility and cumu-

lative volumes as well as trade counts. Confirming the VMEM estimates above, dependencies

between first level depth and volatility as well as trade counts tend to be negative or close to zero,

respectively. Hence, liquidity supply is reduced when volatility and the number of trades are

high. Conversely, liquidity supply is positively autocorrelated with cumulative trading volumes
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confirming the positive dependencies between liquidity demand and supply.

5 Conclusions

In this paper, we propose extending a VMEM model to capture dynamics in conditional (co-)

variances of multivariate trading processes. The key idea is to transform innovations stemming

from a VMEM specification using a Gaussian copula. The mapping into a Gaussian domain

allows to naturally disentagle dynamics in first and second conditional moments. We propose

modeling the latter using a DCC-GARCH process which is tractable also in high dimensions.

The model is estimated using a composite maximum likelihood approach and is easily extended

in various directions.

Applying the new approach to model 5 min volatility, cumulative trading volumes, trade

counts as well as first level depth based on various stocks traded at the NYSE, we show the

following results. Firstly, the proposed Gaussian copula is empirically supported by the data as

the multivariate normality of transformed VMEM innovations cannot be rejected in most cases.

Secondly, we find significant evidence for non-linear (cross-)dependencies between trading vari-

ables. Third, trading variables reveal time-varying conditional variances reflecting the riskiness

in liquidity supply, demand and volatility. The processes are persistent and are subject to positive

cross-dependencies. I.e., uncertainty in trading characteristics easily spills over between the indi-

vidual components. Fourth, we find time-varying and persistent conditional correlations between

the processes. Fifth, according to information criteria and residual diagnostics, the copula-based

multiplicative error process yields a better goodness-of-fit and a better description of higher-order

dynamics in multivariate trading processes.
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Appendix

AIG
Returns Volumes Trades Depth

Mean -0.055 54.960 43.131 22.086
S.D. 17.412 44.228 13.635 29.480
5% -27.383 14.700 23.000 6.567
95% 27.660 135.615 67.000 57.322
LB(20) 2628 41369 44629 50653

AMR
Mean -0.032 46.486 34.075 21.703
S.D. 49.987 40.672 13.064 37.150
5% -79.889 9.100 15.000 6.978
95% 80.067 121.400 58.000 48.625
LB(20) 2055 37089 50179 16873

ASH
Mean 0.127 9.149 20.861 5.784
S.D. 25.164 8.651 9.898 4.944
5% -38.981 1.800 7.000 2.232
95% 39.802 23.500 39.000 13.697
LB(20) 4630 36178 39364 15266

Boeing
Mean -0.036 30.795 38.438 10.041
S.D. 23.138 24.495 13.472 9.527
5% -36.538 7.800 19.000 3.915
95% 36.355 76.700 63.000 23.056
LB(20) 2583 40728 52566 6943

Citigroup
Mean -0.050 103.724 45.847 53.410
S.D. 17.390 88.271 13.479 56.242
5% -27.546 28.200 26.000 16.040
95% 27.960 249.900 69.000 129.695
LB(20) 3028 36924 60612 30895

Table 1: Summary statistics of annualized 5min returns, cumulative trading volumes (in 1000),
number of trades and average first level depth of the stocks AIG, Citigroup, Boeing, ASH and
AMR. The table shows means, standard deviations and 5% and 95% quantiles. Moreover, Ljung-
Box statistics based on 20 lags of the corresponding de-seasonalized series are shown. In case of
returns, the Ljung-Box statistics of squared ARMA(1,1) residuals are displayed.
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Ĉ
3

A
IG

   0
.0
4
6
∗∗
∗

0
.0
0
3

0
.0
1
5
∗

−
0
.0
2
2
∗∗
∗

0
.0
3
3
∗∗
∗
−
0
.0
2
4
∗∗

0
.0
1
1

0
.1
0
0
∗∗
∗

0
.0
3
2
∗∗
∗

0
.0
3
5
∗∗
∗
−
0
.0
1
8
∗

0
.0
1
4
∗

−
0
.0
1
9
∗∗

−
0
.0
2
1
∗∗

−
0
.0
1
7
∗
−
0
.0
3
3
∗∗
∗

   
   

0
.0
0
8

0
.0
0
9

−
0
.0
0
6

−
0
.0
1
6
∗∗

−
0
.0
1
0
−
0
.0
2
0
∗∗

0
.0
2
4
∗∗
∗

0
.0
3
7
∗∗
∗

−
0
.0
1
4
∗

0
.0
2
0
∗∗

0
.0
0
0
8

0
.0
1
1

−
0
.0
0
5

0
.0
1
8
∗∗

−
0
.0
0
0
−
0
.0
2
1
∗∗
∗

   
   

0
.0
1
2

0
.0
0
3

0
.0
0
5

0
.0
0
1

−
0
.0
0
4

0
.0
1
7
∗

0
.0
1
7
∗

0
.0
1
1

−
0
.0
1
2

0
.0
0
2

0
.0
2
2
∗∗

−
0
.0
0
2

0
.0
1
4
∗

0
.0
0
2

0
.0
0
6

0
.0
0
1

   
A

M
R

   0
.0
4
4
∗∗
∗

−
0
.0
0
0

0
.0
1
8
∗

−
0
.0
2
3
∗∗
∗

0
.0
5
8
∗∗
∗

0
.0
4
7
∗∗
∗
−
0
.0
3
9
∗∗
∗

0
.0
9
4
∗∗
∗

0
.0
5
1
∗∗
∗

0
.0
1
6

−
0
.0
1
9
∗

0
.0
4
5
∗∗
∗

−
0
.0
0
3
−
0
.0
2
0
∗∗

−
0
.0
4
0
∗∗
∗

0
.0
8
1
∗∗
∗

   
   

0
.0
0
0

0
.0
1
5

0
.0
0
6

−
0
.0
0
1

−
0
.0
4
2
∗∗
∗

0
.0
4
4
∗∗
∗

0
.0
0
3

0
.0
0
1

−
0
.0
4
5
∗∗
∗

−
0
.0
1
7

0
.0
3
1
∗∗
∗

0
.0
0
2

−
0
.0
0
1

−
0
.0
0
4

0
.0
1
1

0
.0
4
3
∗∗
∗

   
   

0
.0
2
2
∗∗
∗

−
0
.0
0
1

0
.0
2
4
∗∗

−
0
.0
1
3

−
0
.0
3
0
∗∗
∗

0
.0
7
0
∗∗
∗

−
0
.0
0
1
−
0
.0
1
9
∗∗

−
0
.0
3
5
∗∗
∗

−
0
.0
0
1

0
.0
3
7
∗∗
∗

−
0
.0
0
9

−
0
.0
0
7

0
.0
0
5

0
.0
0
6

0
.0
4
3
∗∗
∗

   
A

SH
   0

.0
3
4
∗∗
∗

0
.0
0
9

−
0
.0
1
6
−
0
.0
2
5
∗∗
∗

0
.0
1
3
∗

0
.0
2
7
∗∗

−
0
.0
1
5

0
.0
6
6
∗∗
∗

−
0
.0
0
2

0
.0
1
2

−
0
.0
0
3

0
.0
0
0

−
0
.0
1
1
−
0
.0
7
1
∗∗
∗

0
.0
2
9
∗∗

0
.0
2
6
∗∗
∗

   
   

0
.0
2
8
∗∗
∗

−
0
.0
1
3

−
0
.0
1
2

−
0
.0
0
4

−
0
.0
0
5

0
.0
3
6
∗∗
∗

0
.0
0
1

0
.0
0
1

−
0
.0
2
9
∗∗
∗
−
0
.0
3
5
∗∗
∗

0
.0
4
8
∗∗
∗
−
0
.0
1
9
∗∗

−
0
.0
0
9

0
.0
0
4

0
.0
0
8

0
.0
1
8
∗∗

   
   

0
.0
3
4
∗∗
∗

−
0
.0
1
1

0
.0
0
8

0
.0
0
0

−
0
.0
0
5

0
.0
7
9
∗∗
∗
−
0
.0
2
8
∗∗

−
0
.0
1
8
∗∗

−
0
.0
2
7
∗∗
∗

−
0
.0
1
7

0
.0
4
3
∗∗
∗
−
0
.0
2
1
∗∗
∗

0
.0
0
2

0
.0
1
8

−
0
.0
1
6

0
.0
3
1
∗∗
∗

   
B

A
   

0
.0
0
2

0
.0
0
6

0
.0
2
2
∗∗

−
0
.0
2
0
∗∗
∗

0
.0
4
9
∗∗
∗
−
0
.0
5
3
∗∗
∗

0
.0
4
3
∗∗
∗

0
.0
6
4
∗∗
∗

0
.0
4
8
∗∗
∗

0
.0
5
0
∗∗
∗

−
0
.0
3
1
∗∗
∗

0
.0
0
7

−
0
.0
0
3

−
0
.0
1
5

0
.0
1
9
∗

−
0
.0
6
2
∗∗
∗

   
   

0
.0
0
2

0
.0
2
9
∗∗
∗

−
0
.0
0
4

−
0
.0
0
2

−
0
.0
2
1
∗∗
∗

−
0
.0
1
7

0
.0
2
7
∗∗
∗

0
.0
2
4
∗∗
∗

−
0
.0
2
5
∗∗
∗

0
.0
0
5

0
.0
1
1

0
.0
0
5

−
0
.0
0
5

0
.0
0
1

0
.0
1
5

−
0
.0
4
1
∗∗
∗

   
   

0
.0
1
2

0
.0
0
1

0
.0
1
5

−
0
.0
1
1

−
0
.0
1
9
∗∗

0
.0
3
2
∗∗
∗

0
.0
0
6
−
0
.0
1
3
∗

−
0
.0
1
6
∗∗

0
.0
1
7

0
.0
1
0
−
0
.0
1
5
∗

0
.0
0
6

−
0
.0
0
8

0
.0
1
8
∗
−
0
.0
0
6

   
C

   
0
.0
0
1

0
.0
2
2
∗∗

0
.0
3
2
∗∗
∗

−
0
.0
2
5
∗∗
∗

0
.0
5
3
∗∗
∗

−
0
.0
3
2
∗∗
∗

0
.0
0
9

0
.1
1
1
∗∗
∗

0
.0
3
9
∗∗
∗

0
.0
4
6
∗∗
∗

−
0
.0
2
3
∗∗
∗

0
.0
3
5
∗∗
∗

−
0
.0
2
1
∗∗
∗
−
0
.0
4
0
∗∗
∗
−
0
.0
2
5
∗∗
∗
−
0
.0
3
1
∗∗
∗

   
   −

0
.0
1
3
∗

0
.0
1
7
∗

0
.0
0
4

−
0
.0
1
3
∗

−
0
.0
1
2

0
.0
1
1

0
.0
1
3

0
.0
1
0

−
0
.0
1
7
∗∗

0
.0
3
3
∗∗
∗
−
0
.0
0
7

−
0
.0
1
0

0
.0
0
4

0
.0
0
4

−
0
.0
1
6
∗
−
0
.0
2
4
∗∗
∗

   
   

0
.0
0
7

0
.0
1
2

0
.0
0
8

−
0
.0
2
2
∗∗
∗

−
0
.0
1
5
∗∗

0
.0
2
5
∗∗
∗

0
.0
0
2

−
0
.0
0
8

−
0
.0
1
4
∗

0
.0
3
5
∗∗
∗
−
0
.0
0
5

−
0
.0
0
6

0
.0
0
6

−
0
.0
1
0
−
0
.0
0
4

0
.0
1
7
∗∗

   

Ta
bl

e
4:

E
st

im
at

es
of

C
1
,C

2
,a

nd
C

3
in

(8
)

fo
r

5-
m

in
m

id
qu

ot
e

re
tu

rn
vo

la
til

ity
(s

qu
ar

ed
A

R
M

A
(1

,1
),

re
si

du
al

s)
,c

um
ul

at
iv

e
vo

lu
m

e,
tr

ad
e

si
ze

an
d

av
er

ag
e

de
pt

h
fo

rt
he

st
oc

ks
A

IG
,A

M
R

,A
SH

,B
A

an
d

C
,t

ra
de

d
at

N
Y

SE
in

20
06

.∗
∗∗

,∗
∗

an
d
∗

de
no

te
s

si
gn

ifi
ca

nc
e

on
th

e
1
%

,5
%

an
d

10
%

le
ve

l,
re

sp
ec

tiv
el

y.

24



ω̂
h

Â
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ν∗1,t ν∗2,t ν∗3,t ν∗4,t
AIG

0.672 0.996 0.029 0.696
AMR

0.528 0.789 0.001 0.527
ASH

0.932 0.198 0.000 0.031
BA

1 0.437 0.000 0.356
C

0.977 0.829 0.060 0.478

Table 6: p-values of the Kolmogorov-Smirnov test statistic to test the null hypothesis of the
univariate standard normal distribution for each component of the residual vector ν∗t = R

−1/2
t νt

for 5-min midquote return volatility (squared ARMA(1,1), residuals), cumulative volume, trade
size and average depth for the stocks AIG, AMR, ASH, BA and C, traded at NYSE in 2006.

LLHext LLHbasic BICext BICbasic
AIG

-61367.19 -66505.93 123891.7 133325.7
AMR

-59824.11 -66762.93 120805.5 133839.7
ASH

-55759.49 -66406.21 112676.3 133126.3
BA

-60088.01 -67651.26 121333.3 135616.4
C

-62967.98 -67571.4 127093.3 135456.7

Table 7: Likelihood values and BIC values for the basic and extended VMEM specifications for
5-min midquote return volatility (squared ARMA(1,1), residuals), cumulative volume, trade size
and average depth for the stocks AIG, AMR, ASH, BA and C, traded at NYSE in 2006.
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Figure 1. Kernel density estimates (Epanechnikov kernel) for the residuals {εt}, {ε∗t }, {ηt},
{νt}, and {ν∗t } based on 5-min midquote return volatility (squared ARMA(1,1), residuals; ’vol’),
cumulative volume (’cv’), trade size (’ts’) and average depth (’ad’) for AIG, traded at NYSE
in 2006. The black solid line depicts the kernel density estimate while the grey dashed line
represents the density of a normal distribution fitted to the corresponding series.
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Figure 2. QQ-plots of ξt = ν∗ 21,t + ν∗ 22,t + ν∗ 23,t + ν∗ 24,t versus the theoretical quantiles of the χ2-
distribution with 4 degrees of freedom. The underlying residual series stem from 5-min midquote
return volatility (squared ARMA(1,1), residuals), cumulative volume, trade size and average
depth for the stocks AIG, AMR, ASH, BA and C, traded at NYSE in 2006. p-values of Kolmogorov-
Smirnov test statistics for the null hypothesis a χ2

4-distribution are provided in the headers.
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Figure 3. Estimated conditional variance processes {h.;t} of 5-min midquote return volatility
(top left), cumulative volumes (top right), the number of trades (bottom left) and the average first
level depth (bottom right) for AIG, traded at NYSE, 2006.
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Figure 4. Conditional correlations {R..;t} between 5-min midquote return volatility and cumu-
lative trading volumes (top left), 5-min midquote return volatility and the number of trades (top
right), 5-min midquote return volatility and average first level depth (middle left), cumulative
volumes and number of trades (middle right), cumulative volumes and average first level depth
(bottom left), the number of trades and average first level depth (bottom right) for AIG, traded at
NYSE, 2006.
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