
No. 569 

Torben G. Andersen, Gökhan Cebiroglu, and Nikolaus 
Hautsch 

Volatility, Information Feedback and 
Market Microstructure Noise: A Tale 
of Two Regimes



 

 

 

 

 

 

 

 

 

 

 

 

 

The CFS Working Paper Series 
presents ongoing research on selected topics in the fields of money, banking and finance. The papers 
are circulated to encourage discussion and comment. Any opinions expressed in CFS Working Papers are 
those of the author(s) and not of the CFS. 
 
The Center for Financial Studies, located in Goethe University Frankfurt’s House of Finance, conducts 
independent and internationally oriented research in important areas of Finance. It serves as a forum for 
dialogue between academia, policy-making institutions and the financial industry. It offers a platform 
for top-level fundamental research as well as applied research relevant for the financial sector in Europe. 
CFS is funded by the non-profit-organization Gesellschaft für Kapitalmarktforschung e.V. (GfK). 
Established in 1967 and closely affiliated with the University of Frankfurt, it provides a strong link 
between the financial community and academia. GfK members comprise major players in Germany’s 
financial industry. The funding institutions do not give prior review to CFS publications, nor do they 
necessarily share the views expressed therein. 



Volatility, Information Feedback and Market

Microstructure Noise: A Tale of Two Regimes∗

Torben G. Andersen† Gökhan Cebiroglu‡ Nikolaus Hautsch§

This Version: February 6, 2017

Abstract

We extend the classical ”martingale-plus-noise” model for high-frequency prices by

an error correction mechanism originating from prevailing mispricing. The speed of price

reversal is a natural measure for informational efficiency. The strength of the price reversal

relative to the signal-to-noise ratio determines the signs of the return serial correlation

and the bias in standard realized variance estimates. We derive the model’s properties and

locally estimate it based on mid-quote returns of the NASDAQ 100 constituents. There is

evidence of mildly persistent local regimes of positive and negative serial correlation, arising

from lagged feedback effects and sluggish price adjustments. The model performance

is decidedly superior to existing stylized microstructure models. Finally, we document

intraday periodicities in the speed of price reversion and noise-to-signal ratios.
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1 Introduction

A major theme in the recent financial econometrics literature is the efficient extraction of daily

or intra-daily volatility measures from high-frequency asset price data. A common starting

point is to assume that micro-level prices, or quotes, are governed by an underlying latent

semi-martingale process which, however, is polluted by noise. This noise component is typically

attributed to market microstructure frictions, causing observed micro-level prices to deviate

from the efficient (semi-)martingale process.

It is well-known that this so-called ”market microstructure noise” (henceforth MMN)

induces autocorrelation in high-frequency returns and may cause substantial biases in volatility

estimators if one utilizes very high frequency returns. A classical result is that discretely sampled

high-frequency returns, generated by a (semi-)martingale process polluted by i.i.d. noise, will

display negative serial correlation and follow an MA(1) process. This relationship is already

described by Roll (1984) in the context of transaction returns subject to bid-ask bounce effects.

In a fully parametric setting, this property can be exploited to construct estimators of both the

”efficient,” or fundamental variance and the MMN variance, see, e.g., Zhang et al. (2005).

Hansen and Lunde (2006) show, however, that the dependence patterns in high-frequency

returns typically are not consistent with an MA(1) representation, but tend to follow more

general processes. This is particularly true if the high-frequency observations originate from the

midpoint of bid and ask quotes (mid-quotes), rather than from transaction prices. Moreover,

the former are less impacted by bid-ask bounce and, almost by construction, provide a closer

approximation to the underlying ”efficient” price. Given that the negative serial correlation is

mitigated in mid-quote returns, one may wonder if the standard discrete-time representation of

high-frequency asset returns, as following a random walk plus i.i.d. noise process, remains a

sensible first-order approximation to the price dynamics. Figure 1 shows the empirical first-order

autocorrelation in 1- and 2-second mid-quote returns, computed for local intervals of 10 minutes

for constituents of the NASDAQ 100, over randomly selected trading days.

In the absence of serial correlation in returns, we expect less than five violations on either

side of the confidence band. However, in Figure 1, we find about four times that number.

Furthermore, the violations are scattered over the trading day and their timing differ across

stocks. In addition, positive dependence appears roughly as likely as negative dependence.

These findings are representative for the full cross-section of stocks and it is among the key

empirical facts we scrutinize in this paper. It suggests that, in general, MMN cannot be i.i.d.,

but must have more general properties that accommodate both positive and negative serial

correlation. We may also need to allow for the possibility that the noise is endogenous, i.e.,

correlated with fundamental price innovations. Among others, Hansen and Lunde (2006)
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Figure 1: First-order autocorrelations in 1-second (left) and 2-second (right) mid-quote returns for a
selection of stocks in the NASDAQ 100 index for two random days (January 2 and 9, 2014, on the left
and right, respectively). The autocorrelations are computed over adjacent non-overlapping intervals of
10 minutes from open to close. We depict statistics for Apple, Cisco, Facebook, Google, Microsoft, and
Yahoo. The dashed lines indicate the asymptotic 95% confidence band.
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conclude that the MMN is (contemporaneously) negatively correlated with the efficient price.

The literature on high-frequency-based volatility estimation has responded by constructing

modified procedures that allow for serial correlation of unknown form. The identification of

the efficient price variation is obtained through the assumption that all the systematic serial

correlation stems from a stationary noise process. It follows that consistent estimators may

concentrate on the long-range variation, exploiting techniques along the lines of the long-run

variance estimators in econometrics, as developed by Newey and West (1987) or Andrews

(1991).1 This nonparametric reduced-form approach is agnostic about the properties of the noise

and focuses exclusively on estimating the quadratic variation of the random walk component.

Consequently, the critical notion in the high-frequency volatility literature remains that of a

latent semi-martingale process whose value is known at all times by the active informed market

participants. This requirement is obviously stringent for returns sampled at very high frequencies.

The investor information set is not perfect, and it may not be updated instantaneously, but be

subject to information acquisition and processing delay. That is, investors may operate with

slightly stale or incomplete information. For example, they may not be able to determine

whether an increase in the asset price signals the arrival of positive news or it stems from the

random arrival of net buying orders from liquidity traders (noise). In the former case, the price

likely continues on an upward trajectory as more investors learn of the news or infer its presence

from the trading activity while, in the second case, the price will tend to revert back to the prior

level. While an astute trader can avoid to systematically misprice the asset, this only implies

that the valuation is unbiased on average. That is, during an episode with sustained imbalances

in net liquidity demand or an unusual intensity of privately informed trading, even fully rational

agents do not possess perfect information and they will err in their instantaneous valuation

1For a review of nonparametric noise-robust return variation estimators, see, e.g., the survey of Andersen et al. (2010)
or Ait-Sahalia and Jacod (2014).
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of the asset. On the other hand, rationality does imply that simple momentum and contrarian

strategies are unprofitable. The fact that positive and negative return autocorrelation patterns are

about equally common is consistent with the latter prediction.

The primary objective of this paper is to explore whether the high-frequency price dynamics

displays features consistent with delays in the acquisition, processing or reaction to innovations

in the underlying efficient price. Hence, we extend the classical martingale-plus-noise model

by incorporating a notion of sequential learning or lagged response which allows for a more

structural treatment of the observed temporal dependence patterns and serves to build a bridge to

the related market microstructure literature. Motivated by empirical observations, as illustrated

in Figure 1, we develop a model for mid-quote prices, which deviates from a pure martingale-

plus-noise assumption by allowing for temporal feedback effects due to local discrepancies

between the observed and efficient price. Our starting point is that those deviations, arising

from frictions such as market microstructure noise or liquidity effects, in turn generate forces

that try to correct these inefficiencies. As a consequence, the price discovery process is subject

to a constant interplay between these counteracting forces, and corrective feedback plays a

substantial role in explaining the temporal dependencies in mid-quote returns.

In fact, in terms of empirical plausibility, the findings in Figure 1 present a challenge. They

suggest that the dependence structure in the mid-quote returns varies substantially over time. To

retain a simple, transparent framework that facilitates interpretation, we stipulate that the model

only applies locally over a short time interval, and then allow the parameters to vary across these

non-overlapping windows. Estimating the model separately across short intervals allows the

changing information and trading environment in the market to guide the time-varying parameter

estimates.2 Furthermore, the use of a local approximating model with constant volatility enables

us to sidestep the difficult task of modeling the intraday patterns and persistent dynamics of the

market activity, which almost inevitably would result in severe misspecification. Instead, we can

focus the model on the critical features that distinguish it from existing stylized microstructure

models and compare their performance across a large number of stocks and time intervals.

The main implication of our new representation is that the temporal dependence structure of

observed returns arises from two separate channels. First, in line with the classical literature,

market prices are disturbed by random noise arising due to market microstructure frictions or

noise trading unrelated to information. The second channel is due to past ”mispricing”, i.e.,

deviations between past observed and efficient prices. The speed by which observed prices

react to inherent mispricing is governed by a parameter that reflects the degree or “efficiency”

with which investors are able to decipher the market signals and swiftly identify innovations

2This mimics the asymptotic devise often used in high-frequency volatility estimation where the inference theory is
established under the assumption of constant volatility over local (and asymptotically shrinking) time intervals.
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in the efficient price. Mispricing generates trading opportunities for informed traders in the

spirit of Kyle (1985). Hence, informed arbitrage activity ensures that deviations between the

observed and efficient price remain bounded and that the effects of non-informational shocks get

mitigated, as informed agents impound their knowledge into observed prices through trading,

and other agents infer the presence of information.

To allow for this type of features, the model incorporates an error correction component,

reminiscent of the partial adjustment mechanism proposed by Amihud and Mendelson (1987)

for modeling daily returns. The motivation for thinking along the lines of sequential learning in

this context is inspired by Kyle (1985) and Vives (1995). Thus, we combine notions from high-

frequency statistics and market microstructure theory. As a result, we establish the mechanism

of temporal feedback as an essential component in models for high-frequency prices. We study

the properties of the model in a simple discrete-time framework of (locally) constant volatility.

In such a setting, the model depends on three key parameters, namely the volatility of the random

walk process (the so-called ”fundamental volatility”), the ”noise level” corresponding to the

variance of the noise process, and the informational efficiency parameter governing the speed of

reversals due to mispricing. We show that such a three-parameter setting is quite flexible and

can capture a wide range of stochastic behavior in mid-quote returns. As an important special

case, our framework contains the classical ”martingale-plus-noise” model, where the noise

component, however is negatively correlated with the efficient price. Our temporal feedback

mechanism, arising from local mispricing, therefore provides a natural explanation for the

occurrence of so-called endogenous noise as analyzed, e.g., by Kalnina and Linton (2008).3

Our more structural approach for capturing the dynamics between the observed and efficient

prices is related to a few prior studies that seek to link the properties of noise more explicitly

to the process of trading and the underlying microstructure, e.g., Diebold and Strasser (2013),

Chaker (2013) and Li et al. (2016). However, none of these studies explicitly consider temporal

feedback effects which we deem crucial in explaining the return dynamics observed in Figure 1.

We show that our framework allows for a natural interpretation of the underlying model

components. In particular, the speed of price reversion interacts with the ratio of the noise

versus fundamental innovation volatility – the noise-to-signal ratio – to determine the sign of

the return autocorrelation. This relation let us classify the (time-varying) market environment

into two fundamental regimes. In one regime, the impact of ”mispricing” is overcome by

the strength of the price reversal, induced by idiosyncratic noise shocks, so that the returns

display negative serial correlation, or ”contrarian” price behavior. In the other regime, the

feedback from ”mispricing” generates ”momentum,” or positive autocorrelation, in the observed

returns. Moreover, the regimes have important consequences for standard volatility measures

3See also Sheppard (2013) for a related concept to measure the speed of a market.
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based on high frequency returns, e.g., Andersen et al. (2003). In the contrarian regime, the

realized volatility will tend to exaggerate the underlying quadratic variation of the efficient

price, inducing the well-known upward-shaped (for increasing sampling frequencies) volatility

signature plots, e.g., Hansen and Lunde (2006). In the other regime, however, high-frequency

sampling causes downward-shaped signature plots which are not readily explained within the

traditional ”martingale-plus-noise” setting, but arise naturally in our framework.

In its basic form, the model can be conveniently represented in a linear state-space form,

allowing for standard pseudo-maximum likelihood estimation via the Kalman filter. Thus, we

may readily construct a consistent local volatility estimator. Moreover, we develop a generalized

representation in which specific parameter configurations allow us to encompass alternative

models of interest, including the Amihud and Mendelson (1987) version of the lagged price

adjustment hypothesis and the standard martingale-plus-noise specification. As such, our

approach provides the first step towards the development of new high-frequency based volatility

estimators that simultaneously retain a link to the existing market microstructure literature.

Utilizing high-frequency data from NASDAQ trading, processed via the data platform

LOBSTER4, we estimate the model over local intraday intervals based on high-frequency

mid-quote returns sampled at different frequencies. We confirm that the model parameters

vary over time. In line with our model, we identify local regimes of contrarian and momentum

behavior which are triggered by the (estimated) speed of price reversion in relation to the noise-

to-signal ratio. These regimes are persistent, but generally quite short-lived, with slightly higher

persistence for the more liquid assets. The local estimates for the speed of price reversion point

towards a relatively high degree of informational efficiency, although the price updating clearly

also displays an element of sluggishness. We also document the presence of strong intraday

periodicities in the speed of price discovery and the relative proportion of informational variance

to total variance. Overall, our evidence strongly favors our newly developed specification with

lagged price adjustment relative to other popular stylized microstructure models.

The remainder of the paper is structured as follows. In Section 2, we present the underlying

model. Section 3 discusses the model’s implications for return autocovariances and the identifi-

cation of underlying market regimes. Section 4 illustrates implications for realized variances and

resulting volatility signature plots. In Section 5, we discuss our estimation procedure. Section

6 provides the empirical results for our basic model, while Section 7 provides a more general

representation that enables us to test the relative performance of a number of alternative models.

Section 8 concludes. Auxiliary results and proofs are collected in the Appendix.

4See https://lobsterdata.com/.
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2 The High-Frequency Asset Price Dynamics

We consider a model in discrete time, i ∈ {0, 1, 2, . . . , T}, defined over an equidistant time

grid with (minimal) interval length ∆ = 1. At each discrete point in time, we observe the

logarithm of the quote midpoint for a single financial asset, pi . Hence, for the time period

[0, T ], we have a total of T + 1 separate log-price observations, and T consecutive continuously

compounded returns, pi − pi−1, i = 1, . . . , T . For the interval length ∆ = 1, the number

of return observations corresponds to the length of the time period, n = T/∆ = T , while

for coarser sampling, governed by the integer ∆ > 1, the number of non-overlapping returns

equals n = bT/∆c. While the notation is general, we focus on the salient features of the

high-frequency return dynamics, so we typically think of ∆ as representing a short intraday

trading interval, on the order of seconds.

We assume that the price dynamics evolve according to the following scheme,

pi = pi−1 − α(pi−1 − p∗i−1) + εi, 0 < α < 2, (1)

p∗i = p∗i−1 + ε∗i , (2)

where p∗i denotes the ”efficient” (full information and frictionless) log price at time i, that follows

a random walk process with i.i.d. white noise innovations ε∗i and V[ε∗i ] = σ2
ε∗ . Accordingly,

the observed mid-quote price pi is driven by two components. It is directly impacted by an

i.i.d. noise process εi with V[εi] = σ2
ε . This source of randomness is assumed to arise from

non-informational sources, such as random exogenous trading motives or market microstructure

frictions. It is, therefore, reasonable to assume that this source of randomness is uncorrelated

with informational innovations, i.e., E[εiε
∗
i ] = 0. Second, pi is influenced by the lagged

deviation between pi and p∗i , which we denote by µi = pi − p∗i . The ”mispricing” component,

µi , is akin to the ”classical” MMN component, as it represents the discrepancy between

the observed and efficient price. As illustrated subsequently in Section 3.2, an immediate

consequence is that the observed (mid-quote) returns will display serial dependence.

Econometrically, the component αµi−1 serves as an error correction term which pushes

the mid-quote back towards the ”equilibrium” or ”efficient” level, pi = p∗i . For example, if

the past observed price exceeds the efficient price, i.e., µi−1 > 0, there is an induced negative

mean-reversion component in the price process, whose strength is controlled by the parameter

α. This error correction mechanism is motivated by the intuition that risk-averse agents with

incomplete information form unbiased, yet not error-free, expectations about the efficient

price, and therefore develop a notion of temporary mispricing. This creates opportunities for

(risky) speculative trading that pulls the price back towards efficiency, i.e., when prices appear
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Figure 2: Two simulated trajectories of p∗i and pi from the model defined through equations (1) - (2) for
different values of α. The simulations are based on σ2

ε∗ = 1, σ2
ε = 1/10, and thus λ = 1/10.
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overvalued, informed agents short the asset. As such, the model captures temporal feedback

effects through a minimalistic reduced-form approach. Earlier contributions, including Kyle

(1985) and Vives (1995), discuss various settings and economic factors that render prolonged

price reaction patterns consistent with sequential learning models.

Figure 2 illustrates the relationship between pi and p∗i as a function of α. Low values of

α imply that the information transmission is slow, i.e., lagged pricing errors µi induce only

weak price adjustments. In the extreme case of α = 0, efficient and observed prices are entirely

decoupled. At the other extreme, α > 1, we have over-shooting, and the induced price changes

(pi − pi−1) exceed the pricing errors µi−1.

To keep the model transparent and tractable, we assume that both the noise variance σ2
ε

and the variance of the ”efficient” returns, V[ε∗i ] = V[p∗i − p∗i−1] = σ2
ε∗ , are constant over

time. This is clearly unrealistic if [0, T ] covers a substantial time period, e.g., a day or even an

hour, but it arguably provides a reasonable approximation for short (intraday) intervals. In fact,

this approach mimics the theoretically motivated assumptions invoked for the development of

inference techniques with high-frequency data in Mykland and Zhang (2009) and Bibinger et al.

(2014), who explicitly rely on a locally fixed approximation of the underlying process.5

Alternatively, the model can be couched in a more standard random-walk-plus-i.i.d.-noise

type of representation,

pi = p∗i + µi, (3)

µi = (1− α)µi−1 + εµi , (4)

where εµi = εi − ε∗i denote the innovations to the mispricing process µi, corresponding to the

discrepancy between the shock to the noise and information components. Since these processes

5In Section 6, we estimate the model over short local intervals of 5, 10 and 30 minutes, rendering the constant
volatility parameter a tenable assumption.
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are i.i.d. white noise and independent, σ2
µ = σ2

ε∗ + σ2
ε .

The specification (3) highlights the role of µi as a ”classical” MMN component, causing

deviations between pi and p∗i . Due to the temporal feedback induced by equation (1), however, µi
in equation (4) is serially dependent, and follows a mean zero AR(1) process with autoregressive

parameter (1− α). It is stationary for 0 < α < 2 with unconditional variance,

V[µi] =
σ2
µ

α(2− α)
. (5)

The fact that the innovations to the mispricing component, εµi , are a linear function of both

εi and ε∗i has important implications for the covariance structure of εµi and ε∗i . It takes the form

Σ :=

[
E[(εµi )2] E[εµi ε

∗
i ]

E[εµi ε
∗
i ] E[(ε∗i )

2]

]
=

[
E[µ2

i ] E[µiε
∗
i ]

E[µiε
∗
i ] E[(ε∗i )

2]

]
=

[
σ2
ε + σ2

ε∗ −σ2
ε∗

−σ2
ε∗ σ2

ε∗

]
.

Thus, the model structure implies that µi and ε∗i are negatively correlated, rendering the

mispricing or MMN component µi ”endogenous.” It is a direct consequence of the temporal

feedback relating pi to the lagged efficient price p∗i−1. This is further in line with the empirical

evidence reported by, e.g., Hansen and Lunde (2006).

The error correction mechanism also ensures that the mid-quote price equals the efficient

price in expectation, i.e., E[µi] = 0 and E[pi] = E[p∗i ], for 0 < α < 2. Nevertheless, the

observed and efficient prices deviate over time, and the average discrepancy is related to the

variance of µi, i.e., V[µi]. Specifically, if the observed prices pi equal the efficient prices p∗i
throughout, V[µi] = 0, but as they deviate more systematically, V[µi] grows larger. As such,

V[µi] serves as an indicator for the degree of informational inefficiency of the price process.

Intuitively, all else equal, rapid error correction, α ≈ 1, enhances price efficiency. Likewise,

a low degree of noise, i.e., small σ2
ε , shrinks the gap between the observed and efficient price, as

it lowers εµi and therefore V[µi]. We depict the relationship between the “inefficiency” measure

V[µi] and the strength of the price reversion α in Figure 3 for 0 < α ≤ 1 and σ2
µ = 1. The

relationship is symmetric in |α − 1| for 1 < α < 2. The figure conveys the pronounced

sensitivity of V[µi] to the strength of the error correction mechanism, with the most informative

price scenario, or minimal price inefficiency, attained for complete one-period error correction

(α = 1).

In the benchmark case of α = 1, where feedback perfectly removes prevailing mispricing,
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Figure 3: Illustration of V[µi]/σ
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µ depending on α for α ∈ (0, 2).
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inherited from the previous period, the model can be written as,

pi = p∗i−1 + εi (6)

= p∗i + εµi , (7)

with εµi collapsing to εµi = εi − ε∗i = pi − p∗i = µi, and εµi is i.i.d. with E[ε∗i ε
µ
i ] = −σ2

ε∗ .

This particular representation of the special case α = 1 highlights a critical distinction

relative to the classical random-walk-plus-iid-noise model, given by pi = p∗i + εi , see, e.g.,

Ait-Sahalia et al. (2005) and Bandi and Russell (2008). According to (6), our approach

implies that the mid-quote price pi is affected by the lagged efficient price, p∗i−1, and not the

contemporaneous efficient price p∗i , as in the ”classical” model. The temporal backshift in p∗i is

an integral feature of the model, reflecting the fact that observed prices are updated in response

to recent trades (or quote updates) and newly available information, but with some delay. The

reformulation in (7) illustrates that this lagged response renders the noise process endogenous.

This type of endogeneity typically is imposed through explicit statistical assumptions regarding

the noise terms, see, e.g., Kalnina and Linton (2008), but it arises structurally within our

specification.

In summary, our parsimonious model, featuring just three parameters (α, σ2
ε∗ and σ2

ε ),

endows a simple high-frequency asset pricing process with distinct dynamic properties that are

manifestations of underlying economic forces. The subsequent sections explore the theoretical

ramifications for the associated high-frequency return process, while the empirical evidence

in Section 6 illustrates how this minimalistic framework captures salient features of the data

generating process over short intraday trading periods.
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3 Second Order Return Moments

This section characterizes the conditions for excess volatility and serial correlation in the

observed returns implied by the model. These features turn out to be interrelated and closely

associated with the impact of MMN versus smoothing in the return variation process.

3.1 Excess Return Variation

We define ri = pi − pi−1 and r∗i = p∗i − p∗i−1 as the mid-quote continuously compounded and

”efficient” return, respectively. The observed returns are then given by

ri = −αµi−1 + εi ,

and the return variance is

V[ri] = σ2
ε + α2V[µi],

=
1

2− α
(2σ2

ε + ασ2
ε∗) .

(8)

Clearly, V[ri] ≥ σ2
ε , which is a simple consequence of the fact that informationally-driven

price variation adds to the non-informational noise component, εi , to generate overall return

variation. The strength of the information component is governed by the size of α, reflecting the

speed by which information about the efficient price is impounded in the observed price. For the

benchmark case of α = 1, the return variation is equivalent to the following result, well-known

from the classical i.i.d. MMN model, V[ri] = σ2
ε∗ + 2σ2

ε . This scenario involves “excess

volatility,” as the total return variation exceeds the variation stemming from the information

component. However, in our more general case, we do not necessarily encounter excess volatility.

This critically depends on the relative amount of noise in the system along with the speed by

which informational shifts are transmitted back into market prices.

To formalize the discussion, it is convenient to introduce notation for the ratio of non-

informational versus informational variance, which also plays a crucial role in the characteriza-

tion of other key features of the model. We define the noise-to-signal ratio λ as follows,

λ = σ2
ε/σ

2
ε∗ . (9)

We may then write the unconditional return variance as

V[ri] = σ2
ε∗

2λ + α

2− α
, (10)
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and it follows that,

V[ri] ≤ V[r∗i ] if λ ≤ 1− α, (11)

V[ri] > V[r∗i ] otherwise. (12)

Consequently, in terms of excess return variation, we have two separate regimes, determined

by the size of the noise-to-signal ratio, λ, and the sluggishness of the information feedback,

1− α. The impact of λ is expected; noise elevation translates into higher excess price variation.

The ambiguity about excess volatility stems from the fact that deviations from the lagged

efficient price induce a temporal correction process that smoothes the price path. For now, we

focus on the more empirically relevant range of 0 < α ≤ 1. If α = 1, the impact of smoothing

vanishes, and we are back in the classical MMN result, so the coefficient 1− α is an indicator

of the strength of the smoothing effect, which serves to reduce the return variability. Hence, the

overall effect is dependent on the relative size of the excess return variation generated by the

noise component and the volatility smoothing effect of the partial adjustment mechanism.

In the first regime, where λ < 1 − α, we obtain a reversal of the “classical” i.i.d. noise

characterization of the market dynamics, where excess volatility invariably is associated with

price inefficiency. Instead, we now find observed mid-quotes fluctuating less than the efficient

price, yet the market is also less informationally efficient, as the low value of α slows down

the transmission of price-relevant information. Formally, one may readily verify that, despite

V[µi] being monotonously decreasing (and price efficiency increasing) in α, V[ri] is strictly

increasing in α. Thus, lower values of α increase the average degree of mispricing, while

simultaneously shrinking overall return volatility. As such, the regime provides a striking

contrast to the classical i.i.d. MMN model, linking excess volatility to large pricing errors.

In the second regime, the noise proportion, λ, exceeds the sluggishness in the information

transmission, (1−α). In this case, pi is subject to a relatively higher degree of non-informational

disturbances εi, or a faster transmission of price-relevant information. This induces return

variation that exceeds the efficient price variation. Note that this regime trivially encompasses all

scenarios for which there is overshooting (excess extrapolation of the efficient price information),

α > 1, and where λ > 1 (the noise variation overwhelms the informational variation), as the

condition for V[ri] > V[r∗i ] automatically is satisfied in these circumstances.

3.2 Return Auto-Covariances

The determinants of whether returns display excess volatility are also critical for the sign of the

return auto-covariances. This is a consequence of the following lemma and corollary.

12



Lemma 1 (Return Auto-Covariances). Assume σ2
ε > 0, 0 < α < 2, and h ≥ 1. Then,

Cov[ri, ri−h] = ψ(h− 1) σ2
ε∗

(1− α− λ)

2− α
, (13)

with ψ(h− 1) = α (1− α)h−1, and ψ(0) = 1, if α = 1.

Proof. See Appendix.

Hence, the relation between market sluggishness, 1-α, and the noise-to-signal ratio, λ,

governs the sign of the auto-covariance of observed returns, as detailed below.

Corollary 1. Assume σ2
ε > 0, 0 < α < 2, and h ≥ 1.

(i) If 0 < α < 1, then sgn{Cov[ri, ri−h]} = sgn{(1− α)− λ}.

(ii) If α = 1, then Cov[ri, ri−1] = −σ2
ε < 0, and Cov[ri, ri−h] = 0, for h > 1.

(iii) If 1 < α < 2, then sgn{Cov[ri, ri−h]} = sgn{(−1)h}.

For the benchmark case of α = 1, the error correction is complete within one period. This

eliminates any temporal dependency in the return component associated with the efficient price,

while the temporary noise shock is eliminated in the following trading session, inducing the

standard first-order negative serial correlation in returns, also observed in the classical i.i.d.

noise model. For the region 0 < α < 1, the informational trading channel generates only partial

updating, inducing an element of price smoothing and, critically, at tendency towards positive

return serial correlation, as the price adjustment is spread across multiple periods. When α

and λ are sufficiently low, such that 1 − α > λ, this effect dominates and the observed mid-

point returns display positive auto-correlation. Intuitively, we expect this scenario to capture

situations in which risk-averse and partially informed agents are actively trading on their signals,

enabling others to infer the presence of informed trading from the underlying market activity.

As long as these trading patterns are sustained over some time, and possibly supported by the

contemporaneous public information flow, rational market participants will continue to revise

the probability of informed trading upward, adding to the forces generating price momentum.

This regime is also characterized by subdued return variation due to the prevalence of price

smoothing, as documented in Section 3.1.

In contrast, when the noise-to-signal ratio exceeds the degree of market sluggishness,

observed returns are negatively autocorrelated. In this regime, the price changes and pricing

errors µi are dominated by the noise component, and this manifests itself in mean-reversion

for the observed price. The resulting return pattern is qualitatively consistent with ”contrarian”

trading behavior. As shown in Section 3.1, in this regime, the variance of the observed returns
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exceeds the informationally efficient variance, as the noise shocks and their subsequent reversals

creates excessive price variation.

Furthermore, we note that, for 0 < α < 1, the sign of the auto-correlations are identical

for all h ≥ 1, indicating that both the ”contrarian” and ”momentum” regimes imply a certain

persistence in the return dependencies. To the extent that these regimes provide a good approx-

imation to the local return dynamics over short, yet non-trivial, trading intervals, there may

be an opportunity to capture these episodes empirically. In contrast, for α > 1, the first-order

return serial correlation is negative, and the signs alternate for h > 1. This dynamic behavior is

induced by period-by-period over-correction of the mispricing. While such behavior may be

plausible over longer horizons, it is hard to envision this type of high-frequency shifts in the

return dependencies for mid-quotes across short intraday trading intervals.

To exemplify the occurrence of persistent return correlation patterns, we illustrate the return

dynamics implied by the model for two simple scenarios.

Example 1 (Positive serial correlation). Consider α = 0.5 and λ = 0, and assume the efficient

and observed price initially coincide, i.e., p0 = p∗ = 0. At time i = 1, new information (ε∗1 = 2)

triggers a change in the efficient price to p∗1 = 2. After this shock, the efficient price remains

constant, i.e., ε∗i = 0 for i ≥ 2. Then the observed returns ri = −αµi−1 at times i > 0 obey,

r1 = −1

2
(0− 0) = 0 , p1 = p0 + r1 = 0 .

r2 = −1

2
(0− 2) = 1 > 0 , p2 = p1 + r2 = 1 .

r3 = −1

2
(1− 2) = 1/2 > 0 , p3 = p2 + r3 = 3/2 .

Hence, the innovation in the efficient price at i = 1 generates a sequence of positively correlated

returns for i > 1.

Example 2 (Negative serial correlation). Consider α = 1/2 and λ = ∞, and assume p0 =

p∗0 = 0. A non-informational noise shock arrives at i = 1, i.e. ε1 = 2, εi = 0 for i > 1. In the

absence of information arrivals, ε∗i = 0 for i ≥ 0, the observed returns evolve as follows,

r1 = −1

2
(0− 0) + 2 = 2 , p1 = p0 + r1 = 2 .

r2 = −1

2
(2− 0) + 0 = −1 > 0 , p2 = p1 + r2 = 1 .

r3 = −1

2
(1− 0) + 0 = −1/2 < 0 , p3 = p2 + r3 = 1/2 .

Hence, non-informational noise shock at i = 1 generates a sequence of returns, for i > 1, that

are negatively correlated with the original return innovation.

14



The examples portray extreme scenarios with 1 − α > λ and 1 − α < λ, respectively,

generating pronounced positive and negative autocorrelation in returns. It is often assumed

that mid-quote returns, at least on average, display little serial correlation. In our setting, this

is feasible only if 1 − α = λ. This will be approximately true, if the noise component is

relatively small for the mid-quote returns, while prices impound new information swiftly, so that

1− α is small also. More generally, zero return correlation is consistent with some noise in the

returns as long as the impact is mitigated by a certain sluggishness in market prices. However,

a relatively large noise component, λ ≥ 1, will always induce negative serial correlation and

excess volatility in returns due to strong price reversals.

4 Implications for the Realized Variance

A natural application of the developed model is to explore the implications for volatility

measurement based on high-frequency return data. It is well-known that significant biases

may arise if the underlying martingale assumption for the return innovations are violated to a

significant degree. Our model and data exploited in the empirical work, embody features that

render such consequences quite plausible. Hence, in this section we explore the basic properties

of the quadratic variation of the observed price process implied by equations (1) and (2). We

demonstrate that the identified regimes translate into distinct empirical features in the standard

return variation measures. This may have important implications for both the interpretation

and design of bias-adjustment procedures for such measures, when constructed from returns

sampled at high frequencies.

In this context, it is important to recognize the manner in which the findings depend on the

sampling frequency. To this end, we introduce additional notation to keep track of prices and

returns for different interval lengths. As before, the underlying observations reside in the interval

[0, T ], with ∆ = 1 being the highest possible sampling frequency, and T being measured in

terms of the unit of the corresponding (smallest possible) sampling interval. To compute the

high-frequency volatility measures at a lower frequency, ∆ ≥ 1, we exploit the log prices,

p0, p∆, . . . , pi∆ , . . . , pT , at equidistant points in calendar time, i = 1, . . . , T/∆ − 1, T/∆,

with (short) grid size ∆, where we assume, for simplicity and without loss of generality, that

T/∆ is an integer. Thus, at frequency ∆, we observe a total of n = T/∆ non-overlapping

continuously compounded returns, ri∆ = pi∆ − p(i−1)∆.

The corresponding realized return variance measure at time T is given as

RV ∆
T =

T/∆∑
i=1

r 2
i∆. (14)
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In extension of equation (8), the following theorem provides the expected value of the

model-implied return variation, given we are in the empirically relevant region, 0 < α < 1. For

a discrete time model, this quantity is also known as the previsible quadratic variation or the

sharp bracket process, and we exploit the common notation, 〈p〉∆T = E
[
RV ∆

T

]
.

Theorem 1. For 0 < α < 1, the expected time-T realized variance sampled at calendar time

grid size ∆ equals,

〈p〉∆T = T · σ2
ε∗ + T · σ2

ε∗ · φ(∆)
λ− (1− α)

(2− α)
, (15)

with φ(∆) =
2

α∆

(
1− (1− α)∆

)
. (16)

The mapping ∆ 7→ φ(∆), from R+ into
(
0,− 2

α ln(1− α)
)

is strictly decreasing with,

(i) lim∆→0 φ(∆) = − 2
α ln(1− α),

(ii) lim∆→∞ φ(∆) = 0.

Proof. See Appendix.

We obtain the following corollary, mimicking the conditions in Section 3.1, determining

whether we reside in a regime inducing upward or downward biases in the observed return

variance relative to the efficient or fundamental return variance.

Corollary 2. For 0 < α < 2,

(i) if λ > (1− α), then T · σ2
ε∗ < 〈p〉

∆
T ,

(ii) if λ < (1− α), then T · σ2
ε∗ > 〈p〉

∆
T .

Equation (15) of Theorem 1 decomposes the expected quadratic variation into two terms.

The first signifies the expected variation of the efficient price (T · σ2
ε∗), reflecting the arrival of

fundamental information over the interval [0, T ]. The second term captures the impact of the

noise component and the feedback between the efficient and observed prices. Its sign depends

on two separate factors, namely the noise-to-signal ratio λ and the sluggishness of price updating

(1− α). These components mirror those relevant for our prior discussion of the determinants

for the unconditional return variance and excess volatility.

Theorem 1 demonstrates that, for our model, more frequent sampling of the returns enlarges

the (absolute) bias of the volatility measure, whether it is positive or negative. Moreover, if

the bias is positive, then large values of α and λ (quicker correction of pricing errors and a
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Figure 4: Theoretical quadratic variation 〈p〉∆T as a function of the sampling interval ∆ for different
realizations of α. Exemplary parameters are T = 1, σ2

ε∗ = 1, λ = 1/10. The dotted line corresponds to
the efficient level, i.e., σ2

ε∗T , which is obtained for α = 0.9 and λ = 1− α.
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more prominent role for noise), all else equal, increase the average realized return volatility and

inflates the upward bias in this volatility measure, which is a natural consequence of the regime

characterization given in the corollary.

The two regimes are graphically illustrated in Figure 4. The underlying forces determining

the two regimes are analogous to those governing the return auto-covariance structure, described

in Lemma 1. When the noise-to-signal ratio is sufficiently pronounced, observed returns are

negatively autocorrelated, with the noise component dominating the smoothing effect of the error

correction. As the sampling interval lengthens, the price adjustment becomes more pronounced,

and the quadratic variation decreases monotonically with the size of ∆. Thus, as we shrink ∆,

and rely on returns at a higher frequency, the volatility measure grows sharply. Such upward

sloping signature plots are typically observed for realized volatility computed from transaction

prices. However, there is another possibility. If the noise component is relatively small or

the speed of the error correction is sufficiently high, then, the returns are positively serially

correlated, and returns over longer horizons are more effectively smoothed over the sampling

interval. This scenario generates the opposite effect, with the realized volatility dropping off

as the returns are sampled more frequently. While this phenomenon has received only limited

attention in the literature, our empirical evidence in Section 6 shows that such patterns can be

commonplace for mid-quote returns, as also noted in the work by Hansen and Lunde (2006).
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5 Estimation

Recall that the model is written as,

ri = −αµi−1 + εi,

µi = (1− α)µi−1 + εµi ,

where εµi = εi − ε∗i , with εi and εµi being i.i.d. with variances σ2
ε and σµ = σ2

ε∗ + σ2
ε . Hence,

returns ri are driven by a latent variable µi following an AR(1) process with covariance structure

given by

E[εiµi+h] = (1− α)hσ2
ε ∀h ≥ 0,

E[εiµi−h] = 0 ∀h > 0,

E[εiε
µ
i ] = σ2

ε ,

E[εiε
µ
i−h] = 0 ∀h 6= 0.

To estimate the model, it is convenient to re-write it in terms of a state-space representation.

Denote Xi as a state vector at i with Xi = (µi, µi−1, εi)
′. Then, ri can be written as

ri = FXi,

Xi = GXi−1 + wi,

with F = (0,−α, 1) and

G :=


(1− α) 0 0

1 0 0

0 0 0

 .

The error term vector is given by wi = (εµi , 0, εi) with covariance matrix,

Σw =


σ2
ε + σ2

ε∗ 0 σ2
ε

0 0 0

σ2
ε 0 σ2

ε

 .

Three state equations are required to capture the covariance structure between εµi and εi. If

we impose normality for εi and εµi , we can estimate the parameters α, σ2
ε and σ2

ε∗ based on

the Kalman filter, utilizing the corresponding error prediction decomposition of the (Gaussian)

likelihood, see, e.g., Harvey (1989). Using pseudo-maximum likelihood (PML) arguments in
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an exponential family setting, the estimates are further consistent, although not efficient, under

distributional misspecification as long as the conditional mean processes are correctly specified,

see, e.g., Gourieroux et al. (1984).

An alternative approach relies on unconditional moment restrictions implied by the model.

One such condition is stems from the model-implied quadratic variation and the realized

variance,

φ1(ri;α;σ2
ε , σ

2
ε∗) = σ2

ε∗n− σ2
µnφ(∆)

1− α− λ
(2− α)(λ+ 1)

−
n∑
i=1

r2
i

Further moment conditions are implied by high-order moments of returns ri,

φ2(ri;α;σ2
ε , σ

2
ε∗) = r2

i −
1

2− α
(2σ2

ε + ασ2
ε∗),

φ2,h(ri;α;σ2
ε , σ

2
ε∗) = riri−h − ψ(h− 1)σ2

ε∗
1− α− λ

2− α
,

with ψ(h) = α(1− α)h ≥ 0 defined as in Lemma 1, and h = 1, 2, . . . .

A GMM estimator according to Hansen (1982) can then be formulated as,

θ̂(W) = arg min
θ

[
1

n

n∑
i=1

m̃(ri; θ)

]′
Wn

[
1

n

n∑
i=1

m̃(ri; θ)

]
,

where θ = (α, σ2
ε , σ

2
ε∗)
′, while m̃(ri; θ) = (φ1(ri; θ), φ2(ri; θ), φ2,1(ri; θ), φ2,2(ri; θ), . . . )

represents a set of model implied moment conditions, andWn is a conforming positive definite

weighting matrix.

6 Empirical Evidence

We employ high-frequency mid-quote prices of the constituents of the NASDAQ 100 index,

covering the full 6 1/2 hour trading day. The underlying data is provided by the LOBSTER

database6 building on NASDAQ’s historical TotalView-ITCH data. Our sample covers the first

40 trading days of 2014. The model is estimated by (pseudo-) maximum likelihood using the

Kalman filter as described in Section 5.7

6See https://lobsterdata.com/.
7We also validated these estimates through the method of moments approach using the first three moment conditions
provided in Section 5.
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6.1 Basic Features of the Sample

A major objective of the paper is to explore the time-varying characteristics of the mid-quote

return series across short calendar intervals, spanning 5-30 minutes. Thus, our study focuses

on liquid stocks with frequent quote revisions. We divide our sample into five groups based on

the quintiles of the average daily number of mid-quote revisions, with Group 1 representing

those with the least quote revisions and Group 5 those with the most. The histogram in Figure

5 displays the distribution of daily (mid-) quote revisions, with vertical lines representing the

20’th, 40’th, 60’th and 80’th percentiles. The corresponding quintile means are 2,210, 6,130,

8,710, 11,180, and 19,400 quote revisions. If we sample the mid-quotes every 5 seconds (over 6

1/2 hours of trading), we have 4,680 return observations per day, and sampling each 10 seconds

lead to 2,340 return observations. Consequently, for the typical stocks in Group 1, we have on

average fewer quote revisions than intra-daily returns at these frequencies, while this ratio is

much more favorable for Groups 2 through 5. For this reason, we focus our quantitative analysis

primarily on the stocks in Group 2-5. Nonetheless, for illustrative purposes, we also include

Group 1 stocks in some aspects of the analysis. Additional details about our five groupings

of NASDAQ 100 stocks are provided in Table 4 of the Appendix. It reveals that Group 1

has relatively few quote revisions, in part because it contains low-priced stocks with large

(percentage) tick sizes and high depth on the first level of the order book.

Figure 5: Empirical distribution of per-stock averages of daily mid-quote revisions for 100 stocks, based
on the first 40 trading days in 2014. The vertical dashed lines indicate the corresponding quintiles, i.e.,
the 20th, 40th, 60th and 80th percentiles.

Average Midquote Updates/Day

N
um

be
r 

of
 S

to
ck

s

0 10000 20000 30000 40000

0
5

10
15

One key issue is whether there is evidence of local regimes with persistent return autocorre-

lations of either sign. This is an empirical question which we partially address in this section

by studying the sample return autocorrelation over consecutive small intervals. In so doing,
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we maintain that the expected return over a short interval is negligible. Hence, in computing

the sample autocorrelations, the mean is treated as known and equal to zero. This provides an

improved trade-off between bias and efficiency, as the return innovations are large and render

the realized return an extremely imprecise estimator for the underlying mean return.

Table 1: Table reports the percentage of estimated significant first-order return autocorrelations,
Ĉor(ri, ri−1), at the 1%, 5% and 10% level for various specifications of the estimation window T
and sampling frequency ∆. The first three columns report the percentage of observations exhibiting
significant autocorrelation using a two-sided test; the next six columns report the percentage of ob-
servations that exhibit significant positive autocorrelation (Columns 4 to 6) and significant negative
autocorrelation (Columns 7 to 9) using corresponding one-sided tests. The last column provides the
number of observations in each estimation window, with n = T · 60/∆. The underlying confidence
intervals are based on the asymptotic standard deviation of the empirical first-order autocorrelation,
sd = 1/

√
n. Estimates are based on the first 40 trading days of 2014, starting on January 2nd. Each

trading day has 390 trading minutes. Thus, for an intraday window of T = 10min, the total number
of estimates for the 80 stocks in Groups 2-5 is N = 39 · 40 · 80 = 124, 800. For T = 5min, we have
N = 249, 600.

Two-Sided
One-Sided

Ĉor(ri, ri−1) < 0
One-Sided

Ĉor(ri, ri−1) > 0

T = 30min (N = 41, 600)

∆ 1% 5% 10% 1% 5% 10% 1% 5% 10% n

1sec 25.8 37.2 44.7 18.8 27.0 32.6 11.3 17.7 22.3 1800
2sec 15.7 27.3 35.7 9.5 17.3 22.8 10.3 18.4 23.8 900
5sec 9.4 19.7 27.1 4.5 9.8 14.4 8.4 17.3 24.4 360
10sec 6.4 15.4 22.5 2.3 6.6 10.9 6.6 15.9 23.1 180

T = 10min (N = 124, 800)

∆ 1% 5% 10% 1% 5% 10% 1% 5% 10% n

1sec 17.9 28.7 36.2 13.0 20.8 26.2 8.9 15.4 20.3 600
2sec 10.3 19.9 27.1 6.6 13.2 18.5 6.8 14.0 19.8 300
5sec 5.0 13.0 19.9 2.7 7.6 12.3 4.8 12.2 18.6 120
10sec 3.0 9.3 15.6 1.5 5.3 9.2 3.3 10.3 17.1 60

T = 5min (N = 249, 600)

∆ 1% 5% 10% 1% 5% 10% 1% 5% 10% n

1sec 14.1 23.9 30.7 10.1 17.2 22.2 7.5 13.6 18.2 300
2sec 7.9 15.9 22.3 5.1 10.9 15.7 5.4 11.4 16.7 150
5sec 3.5 9.6 15.6 1.9 6.0 10.4 3.3 9.6 15.5 60
10sec 1.5 6.0 11.2 0.8 3.8 7.5 1.8 7.3 13.6 30

Table 1 summarizes evidence regarding the statistical significance of return autocorrelations
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over intervals of 5, 10, and 30 minutes, computed from an intra-interval sampling frequency

of 1, 2, 5, and 10 seconds. The results are based on the full set of 80 individual stocks in

Groups 2-5, using the first 40 trading days of 2014. The exclusion of stocks from Group 1

(with relatively few quote revisions) is not critical for the conclusions below. The first three

columns report the number of times the computed autocorrelation deviates significantly from

zero, while the following two sets of three columns report the number of significant negative and

positive autocorrelations, respectively. For the highest sampling frequencies, we have a large

number of return observations at our disposal, but one may be concerned about the impact of

microstructure noise. At the lower sampling frequencies, the impact of noise is less problematic,

but we have fewer observations, so the estimation precision drops and the power to reject the

null hypothesis declines. Hence, there is a fundamental trade-off in the designs, and we report

results across a broad set of configurations to convey a general sense of the findings. We also

caution that we expect the most suitable return frequency and window length to vary over time

for a given stock and to differ across stocks. Given the unobserved variation in the market

environment and the heterogeneity across stocks, we merely apply the assumption of locally

constant return autocorrelations to search for robust features of the data that speak to critical

aspects of the high-frequency return dynamics.

Table 1 reveals that we have many more statistically significant autocorrelations than

expected under the null hypothesis of uncorrelated high-frequency returns. Moreover, we seem

to acquire additional power to reject the null hypothesis if we expand the number of observations,

either through a higher sampling frequency or a longer time interval. Another important feature

of Table 1 is the asymmetry in the autocorrelations. For all sampling frequencies, interval lengths,

and significance levels, we observe a larger number of positive than negative autocorrelations.

Since the test for significant non-zero autocorrelations is symmetric, the hypothesis that positive

or negative serial-correlation occurs with equal probability is also readily tested. Given the large

number of observations, we find this test to reject the null hypothesis with an extreme degree of

significance. In other words, the distribution of the return autocorrelations is definitely positively

skewed. This confirms our conjecture that the dynamics of the high-frequency mid-quote returns

are very different from those derived from transaction prices, for which the bid-ask bounce

induces strong negative serial correlation. At the same time, it is also evident that the dynamics

varies over time, consistent with the idea that the return autocorrelation changes sign across the

states of the market. In particular, we find evidence for a predominance of “momentum” relative

to “contrarian” regimes, although both are quite common.

Figure 6 depicts the proportion of estimated return autocorrelations that are significant at

the 10% level as a function of the sampling frequency for both Group 1 and Group 2-5 stocks.

The qualitative pattern is identical for both set of stocks but – as expected – the large proportion
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of zero returns in Group 1 is associated with a noticeable drop in the relative frequency of

significant autocorrelations.

Figure 6: The figures show the proportion of significant first order return autocorrelations at the 10%
significance level for different settings of the intraday estimation period T and sampling frequency ∆.
The two curves refer to the 20 stocks in Group 1 and the 80 stocks in Group 2-5, respectively. The first
graph shows the result for T = 5min, the second for T = 10min, and the last for T = 30min.
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The interpretation of the significant return autocorrelations in Table 1 as representing

short-lived regimes, reflecting the state of information processing and risk-return assessment

in the market, is not directly testable. However, we can gauge whether the significant return

autocorrelations occur randomly or reflect a more permanent feature of the market environment.

If the non-zero autocorrelations are indicative of market conditions, we would expect some

permanency in the state, even if they tend to be fairly short-lived. On the other hand, if they

arise from purely idiosyncratic noise or random shocks, we would not expect to observe any

significant persistence in the interval-specific return autocorrelation estimates.

Figure 7 reveals that the interval-to-interval correlation of the estimated first order auto-
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Figure 7: The figures show the proportion of stocks exhibiting significant window-to-window first order
autocorrelation of the first order return autocorrelation at the 10% level across different settings of the
intraday estimation period T and sampling frequency ∆. The 20 stocks in Group 1 and the 80 stocks
in Groups 2-5 are displayed separately. The first graph shows the result for T = 5min, the second for
T = 10min and the last for T = 30min.
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correlation coefficients is significant (and positive) for a large majority of the stocks in Group

2-5. Moreover, the number of significant coefficients is higher for the shorter time intervals,

consistent with regimes that tend to persist across consecutive intervals, but are of relatively

short duration. As expected, we find less persistence among Group 1 stocks, which feature

fewer mid-quote revisions. Nonetheless, the qualitative findings are similar across all groups.

Overall, these results are consistent with our thesis that the dynamics for the mid-quote returns

undergo distinct periods of positive and negative serial correlation, linked to variation in the

market environment. These effects are at the heart of the model introduced in Section 2.
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6.2 Parameter Estimates

We now explore the estimation results for our high-frequency return model defined through

equations (1)-(2), based on the Kalman filter approach detailed in Section 5.

Figure 8 depicts the inferred empirical distribution for key parameter estimates and summary

statistics, obtained from localized 10 minute windows with a sampling frequency of 5 seconds,

across the first 40 trading days in 2014 for our 100 stocks. The figure displays the distribution for

the full sample and for the five quintiles of stocks sorted on the intensity of the quote-midpoint

revisions. The findings are qualitatively identical for alternative window sizes and sampling

frequencies, as evident from Figures 15 to 17 in the Appendix.

Figure 8 confirms that the stocks in Groups 2-5 generate nearly identical estimates, while

those for Group 1 tend to deviate quite significantly from the others. In fact, the distribution for

the four largest quintiles in the first two rows coincide to the extent that the curves effectively

portray the identical distribution. For the variance of the efficient price and the noise component,

minor deviations are visible, as the most liquid stocks (Groups 4-5) generate a slightly flatter

distribution, with less mass at very small values and slightly thicker tails on the upside.

Specifically, for stocks in Groups 2-5, the estimates of α are approximately symmetric

around a mode of slightly below 0.90, corroborating the hypothesis of a feedback effect and

a mildly sluggish price adjustment. Likewise, the estimates of λ are unimodal, but centered

on a value just below 0.10. This implies that the “serial correlation condition,” λ̂ − (1 − α̂),

has a mode near zero, implying very limited return autocorrelation on average. Nonetheless,

this distribution is centered on a slightly negative value and displays some left-skewness. This

induces a moderate tendency towards positive return serial correlation. This is consistent with

the distribution of the first-order return autocorrelation in the middle right panel, which has a

small positive mode and a right skew.

In contrast, the stocks in Group 1 generate α̂ and λ̂ estimates that are somewhat larger

and distinctly right skewed. That is, stocks with larger tick sizes and fewer quote revisions

tend to generate returns that are relatively noisy and react more strongly to past deviations

from the efficient price. Consequently, the associated distribution for the “serial correlation

condition” has a positive mean and is slightly right-skewed. This is consistent with the absence

of a right-skewed distribution for the realized return autocorrelation of Group 1 stocks.

Finally, we note that the estimates for the efficient variance are about tenfold the size of

those for the noise variance, but both distributions feature a strong tilt towards low values and a

much smaller right tail. It is evident that these two parameter estimates are highly correlated,

generating a stable distribution for λ, featuring values predominantly within the 0.05 − 0.15

range. Clearly, the noise component in the mid-quote returns is quite small. This property is in
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Figure 8: The figure depicts the distribution of estimates for α, λ, λ− (1− α), the return autocorrelation
Cor(ri, ri−1), and the variances σ2

ε∗ , and σ2
ε . The estimates are obtained from all T = 10 minute

intervals, with intra-interval sampling at the frequency of ∆ = 2 seconds, across all 100 stocks in our
sample during the first 40 trading days in 2014. The six curves reflect averages across stocks in each of
the five groups built on the average daily number of mid-quote revisions, and all combined.
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striking contrast to high-frequency transaction returns where the bid-ask bounce is dominantand

generates a strong negative return serial correlation.

Overall, we find strong indications of time-variation in the local return dynamics, both

from the distribution of the (model-free) return moments and from the distribution of the

estimated model parameters. At the same time, the empirical distributions generally range across

economically sensible and interpretable values. In Table 2 we provide summary statistics of

these distributions for the stocks in Groups 2-5. We exclude Group 1 here to avoid confounding

the evidence with the somewhat different features identified from these stocks. Moreover, to

avoid excessive distortion from a few outliers, we eliminate all parameter estimates for intervals
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where σ2
ε∗ exceeds its 99 percentile, and for λ beyond three. The latter is a truly extreme

realization given the mean of 0.115 and standard deviation of 0.17 for the 5-second sampling

frequency in the truncated sample. The extreme estimates are closely related to unusual values

for the realized return variation over the given short interval, so they serve as an effective filter

for “abnormal” market conditions that may bias the general inference.8

As in Figure 8, Table 2 focuses on 10-minute observation windows, but we report results

for 1-second and 5-second sampling along with the 2 seconds used in the figure. We note that

the parameter distributions widen as the sampling gets courser and the number of intra-interval

observations shrink. This suggests that sampling at the higher frequencies is beneficial. However,

price discreteness and other microstructure features tend to have a stronger distortionary effect

at high frequencies, which may inflate certain parameters, such as the noise variance estimates,

and generate offsetting biases in other parameters. Hence, the use of slightly longer sampling

intervals should speak to the robustness of the findings.

Table 2: The table reports percentiles, the mean and standard deviation for the parameter estimates and
Ĉor(ri, ri−1). The statistics are based on 10-minute intervals over the first 40 trading days of 2014 and
all stocks in Groups 2-5. Parameter estimates for intervals where σ̂2

ε∗ exceeds its 99 percentile or λ̂ ≤ 3
are excluded.

T = 10min,∆ = 1sec

q5 q25 Median Mean q75 q95 SD

α̂ 0.778 0.864 0.909 0.909 0.963 1.052 0.105
λ̂ 0.077 0.088 0.096 0.102 0.106 0.129 0.073

λ̂− (1− α̂) −0.150 −0.048 0.005 0.011 0.069 0.181 0.124
Ĉor(ri, ri−1) −0.144 −0.056 −0.000 −0.008 0.041 0.121 0.081
σ̂2
ε∗ (·10−8) 0.060 0.140 0.254 0.563 0.517 1.850 1.219
σ̂2
ε (·10−8) 0.005 0.013 0.025 0.055 0.050 0.180 0.125

T = 10min,∆ = 2sec

q5 q25 Median Mean q75 q95 SD

α̂ 0.726 0.846 0.905 0.891 0.961 1.056 0.138
λ̂ 0.072 0.086 0.095 0.104 0.106 0.138 0.101

λ̂− (1− α̂) −0.210 −0.070 −0.001 −0.004 0.066 0.188 0.158
Ĉor(ri, ri−1) −0.149 −0.053 0.000 0.002 0.058 0.151 0.091
σ̂2
ε∗ (·10−8) 0.116 0.279 0.516 1.177 1.058 3.875 2.670
σ̂2
ε (·10−8) 0.009 0.026 0.048 0.118 0.101 0.394 0.287

T = 10min,∆ = 5sec

q5 q25 Median Mean q75 q95 SD

8Unusual σ2
ε estimates typically arise from exceptionally tranquil market environments, where the efficient price

variance σ2
ε∗ is small and λ correspondingly large, or from intervals in which there is a large price change (jump)

in the efficient price. The former scenario renders the effective sample small and parameter estimates unreliable
over the interval, while the latter scenario violates the parameter constancy assumption, generating an inherent
misspecification that renders the interpretation of estimation results problematic.
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α̂ 0.344 0.812 0.890 0.856 0.964 1.086 0.201
λ̂ 0.001 0.083 0.094 0.115 0.111 0.209 0.170

λ̂− (1− α̂) −0.433 −0.117 −0.017 −0.029 0.073 0.237 0.242
Ĉor(ri, ri−1) −0.177 −0.059 0.013 0.016 0.091 0.209 0.118
σ̂2
ε∗ (·10−8) 0.274 0.710 1.363 3.236 2.918 11.105 7.249
σ̂2
ε (·10−8) 0.003 0.059 0.121 0.327 0.277 1.228 0.772

In fact, we do find a higher mean and median value for α̂ estimated at one second than for the

lower frequencies. For the former, half of the estimates fall within (0.86, 0.96) and 90% within

(0.77, 1.06). At the other extreme, for 5-second sampling, (0.81, 0.97) covers half the estimates,

while the 5% − 95% percentile span is dramatically expanded to encompass (0.34, 1.09). In

comparison, the median value for λ̂ is remarkably stable at 0.094 to 0.096 across the sampling

frequencies, although the identical inflation of the standard errors and associated variation in

the point estimates is observed again, with the 90% range spanning (0.07, 0.13) at one second

and (0.00, 0.21) at five seconds. This suggests that the noise variance for the quote midpoint

typically is about only one-tenth of the innovation variance for the efficient price. Combined,

these results imply that the distribution of the parametric serial correlation condition λ̂− (1− α̂)

is centered on a slightly negative value and is mildly left-skewed. Consistent with this finding,

as stipulated in Corollary 1, the empirical first-order return serial correlation is slightly positive

on average and mildly skewed towards the right. Finally, for σ2
ε∗ and σ2

ε we confirm that the

efficient price variance generally is about ten times larger than the noise variance. Moreover,

the strong right skew noted in Figure 8 is apparent for both variables, even after our truncation

of the more extreme outliers.

Another implication of our detection of local regimes with predominantly positive or

negative autocorrelation, depending on the relative strength of the noise and price smoothing

effects, is that the annualized realized volatility measures, locally, will be biased downward or

upward relative to the efficient price variation, as outlined in Corollary 2. To assess whether

our parametric model and estimation procedure captures such effects, Figure 9 depicts the

realized volatility signature plot, obtained by averaging over all Group 2-5 stocks and 10-minute

intervals. The traditional plot (black) is virtually flat from frequencies spanning one to thirty

seconds, documenting that we avoid systematic microstructure biases in the volatility estimates,

even at the highest frequencies we employ. In addition, the figure depicts the signature plots

conditioned on the sign of the parametric serial correlation condition, λ̂−(1−α̂), with parameter

estimates obtained at the five second frequency. If the sign is positive, the condition implies a

negative return autocorrelation and associated downward sloping signature plot. This prediction

is strongly supported by the plot. Likewise, when the sign is negative, we obtain the upward

sloping volatility signature plot. Nonetheless, we caution that these realized variance measures
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are strongly downward biased relative to the expected values in the sample, because we have

eliminated some extreme return outliers through our filtering. As a consequence, we should not

place much emphasis on the actual levels or relative height of the plots in the figure, but only

the shapes of the individual curves.9

We conclude that our localized parametric model captures the state of the return moments

quite robustly across a wide range of return frequencies, with direct implications for the accuracy

of realized volatility measures as indicators of the underlying efficient price variation. In general,

when the market enters the positive return autocorrelation state, associated with a substantial

degree of smoothing of the fluctuations in the fundamental price, there is a systematic tendency

to underestimate the underlying volatility through the standard realized volatility measure. The

opposite scenario occurs when negative return autocorrelation, typically reflecting reversals of

idiosyncratic noise shocks, are dominant, and the realized volatility measures tend to overstate

the fundamental return volatility.

Figure 9: The figures shows the average realized variance against the sampling frequency ∆, over periods
where λ̂ > (1− α̂) (red curve), λ̂ ≤ (1− α̂) (blue curve), and all periods (black curve). The parameter
estimates used to evaluate these conditions are based on five-second returns. The underlying realized
returns are filtered to eliminate excessive outliers, as discussed in the main text and in Table 2.
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We conclude this section by illustrating the correspondence between the parameter estimates

and the return autocorrelations for individual 10-minute intervals. Figure 10 shows the time

series plots of the estimated model parameters and the model-implied versus empirical first-order

return autocorrelations based on 2-second sampling over one random trading day for Yahoo and

Microsoft. The figure is quite representative for other stocks and trading days. First, we note

that α fluctuates around the relationship 1− α = λ rendering the returns close to uncorrelated.

In line with the summary statistics above, however, there are some significant deviations from

9We have confirmed that the slope of the two conditional plots are robust to the inclusion of all observations in the
sample. In this case, all curves shift upward by a considerable amount, but retain their general shape.
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this benchmark. In fact, we observe several distinct scenarios. The most dramatic is for Yahoo,

in the interval from 20-30 minutes prior to the market close. The λ parameter is missing as

the value exceeds 3, compared to an estimated value around or below 0.13 for the other 38

intervals. This further implies that we dismiss this interval from all subsequent analysis. Hence,

the large drop in α to 0.4 for this particular interval – compared with estimates above 0.8 for

all the other intervals – is not used in the sequel. This confirms that extreme estimates for the

variance related quantities tend to generate (unreasonable) outliers for the remainder of the

model parameters as well.

For examples of contrasting scenarios, consider the Microsoft intervals ending respectively

in minute 210 and 270. In the former case, we have an increase in the smoothing effect (α drops)

and less noise (λ declines), so we have two separate reinforcing factors contributing towards the

observed positive spike in the return serial correlation coefficient. In the latter case, we observe

a smaller positive spike in the return autocorrelation, as a sharp increase in the smoothing effects

(drop in α) is partially offset by a marked increase in the noise variance (λ increases). A noise

shock can arise from the arrival of large idiosyncratic and uninformed transactions, while the

increased sluggishness may stem from a shift in the market environment that fosters increased

uncertainty about the fundamental value of the asset.

We further note the striking correspondence between the model-implied and empirical

return autocorrelations in the bottom row of the figure. It shows that our model parameters can

explain the vast majority of the variation in the observed return autocorrelation. In some sense,

the model parameters translate the realized high-frequency return dynamics into economically

interpretable quantities that we can relate to information and frictional sources. In Section 7,

we explore the implications of a more general model specification that allows us to assess the

performance of the current model relative to alternative parsimonious representations that are

popular in the wider literature. Finally, for both stocks we note that the ”fundamental” variance

σ2
ε∗ and the noise variance σ2

ε follow a distinct intraday pattern with elevated variances during

morning trading. This feature is representative of a typical intraday pattern and will be analyzed

below, along with the intraday periodicities of α and λ.

6.3 Parameter Variation and Time-of-Day Effects

As discussed in Section 6.2, we observe considerable time variation in the model parameters

α and λ. In this section, we explore whether time-of-day effects play a significant role in

generating this feature.

Figure 11 reports averages (across stocks and days) of α̂, λ̂, σ̂2
ε∗ , σ̂

2
ε , and Ĉor[ri, ri−1] per

time-of-day, obtained across different sampling frequencies ∆ for a window length of T = 10

minutes. The horizontal axis depicts the time in minutes after the market open at 9:30.
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Figure 10: Time series plots of estimated model coefficients α̂, λ̂, σ̂2
ε∗ , σ̂2

ε , and model-implied and
empirical first-order return autocorrelations. Yahoo (left column) and Apple (right column), 6th trading
day 2014. ∆ = 2 secs and T = 10 min.
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The intraday plot for σ̂2
ε∗ reveals that an L-shape pattern of high volatility in the morning

followed by a decay throughout the day is a systematic feature across stocks and time. Thus, the

elevated volatility components observed for a couple of individual trading days in Section 6.2

are typical. Our results imply that the fundamental volatility is extraordinarily high during the

first few trading minutes, which likely stems from price discovery associated with information
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processing of overnight news and orders. Interestingly, the noise variance σ̂2
ε displays the

identical qualitative pattern, suggesting that both the informational and noise variance is at a

peak in the morning. In fact, the L-shape is even more pronounced for σ̂2
ε , yielding generally

higher noise-to-signal ratios λ̂ in early trading. The relative elevation of noise in the morning

likely reflects caution among market intermediaries and traders as they anticipate the high level

of fundamental price uncertainty after the open, leading to widening spreads and lower effective

market depth.10

The speed of price reversals, α, also tends to be slightly elevated after the open, when

information is processed during the first trading minutes. This suggests a fairly rapid incorpo-

ration of fundamental news after the open. Subsequently, α declines and then shows a mild

increase towards the market close, generating a distorted u-pattern. The increase late in the day

may be due to an increase in liquidity associated with a rise in (uninformed) trading as market

participants seek to attain their desired positions prior to the market close. This is also consistent

with a minor elevation in λ towards the market close, as an increase in non-informational trading

generates additional price pressure, but no permanent innovation in the fundamental price.

In theory, the systematic intraday variation in α and λ governs the sign of the return

autocorrelation, see, e.g., Corollary 1. In fact, we do detect weak intraday patterns in the

actual first-order return autocorrelations. They form an inverted U-shape, associated with

lower (more negative) serial correlation following the market opening and before the close,

and higher (positive) autocorrelations during mid-day. This pattern is in accordance with rapid

price discovery, and diminished sluggishness in prices, during morning trading, which renders

the elevated noise component dominant compared to the price sluggishness. Later on, prices

turn more sluggish (α drops) while the noise shocks are mitigated, leading to a reversal where

sluggish adjustment to fundamental news becomes dominant and induces a degree of momentum

in prices. Finally, the end of the trading day sees lots of trading, and prices likely react swiftly

to fundamental news, leading the noise term to become the main source of serial correlation in

mid-quotes, inducing a tendency towards “contrarian” price dynamics.

Overall, we find evidence corroborating the idea that liquid market conditions early and

late in the trading day foster efficient discovery and processing of fundamental news. At such

times, the main component behind temporary misalignments in prices is MMN, consistent with

negative return serial correlation. In contrast, when the information and order flow is slower,

the resources devoted to price discovery shrink and it may be more difficult to identify the less

prevalent news items among the ever-present noise. This tends to enhance price sluggishness,

10Even if it is not transparent from the figure, the intraday shape of σ̂2
ε∗ and σ̂2

ε is broadly similar across all sampling
frequencies. The cascading effect, arising from the higher variance levels for the larger values of ∆, is a natural
byproduct of aggregation, as price innovations and noise shocks cumulate over longer horizons.
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generating conditions that favor an element of momentum in the price formation.

Figure 11: The figure depicts the intraday averages of the parameter estimates for ∆ ranging from 1 to 60
seconds and T = 10 minutes. The underlying realized returns are filtered to eliminate excessive outliers,
as discussed in the main text and in Table 2.
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Beyond the intraday pattern, the shift in the level of the parameter estimates across the

sampling frequencies is also noteworthy. As observed in Table 2, we find α declining and λ

increasing in ∆. To assess this feature, we provide the temporal aggregation properties for both

parameters in the following theorem, under the strong assumption that our underlying model is

correctly specified at a high reference frequency for all stocks and at all times. Moreover, for

tractability we impose explicit distributional assumptions.

Theorem 2. Assume the price dynamics are given by equations (1) and (2). Moreover, let the
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observed price process pi, sampled at step size ∆ ≥ 1, with observations for i = 0,∆, 2 ·
∆, . . . T −∆, governed by the following relations,

pi+∆ = pi − α∆(pi − p∗i ) + εi+∆,∆, p∗i+∆ = p∗i + ε̂∗i+∆,∆ (17)

where εi+∆,∆
iid∼ N (0, σ2

ε,∆) and ε̂∗i+∆,∆
iid∼ N (0, σ2

ε∗,∆) for all i ∈ {k ·∆, k = 0, 1, 2, 3, . . .}.
Then, for ∆ ≥ 1 and 0 < α < 1, we have,

α∆ = 1− (1− α)∆ (18)

σ2
ε,∆ = gεσ

2
ε + gε∗σ

2
ε∗ (19)

σ2
ε∗,∆ = ∆ · σ2

ε∗ , (20)

with

gε =
1

α(2− α)

{
1− (1− α)2∆

}
, (21)

gε∗ =
1

α(2− α)

{
4(1− α)∆ − (1− α)2∆ + α

(
2
(
1− (1− α)∆

)
+ (2− α)∆

)
− 3

}
.

(22)

Proof. See Appendix.

Equation 18 implies that α∆ is strictly increasing in ∆, with lim∆→∞ α∆ = 1. Thus, any

given pricing error should be mitigated over time and, for sufficiently long horizons, it vanishes

altogether. In addition, Theorem 2 allows us to derive the noise-to-signal ratio λ∆ for models

estimated at lower frequencies (∆ > 1) as a function of the noise-to-signal ratio of the baseline

model (∆ = 1),

λ∆ =
σ2
ε,∆

σ2
ε∗,∆

=
1

∆

(
gελ+ gε∗

)
. (23)

As lim∆→∞ gε = 1
α(2−α) and lim∆→∞ gε∗/∆ = α(2−α)

α(2−α) = 1, we have lim∆→∞ λ∆ = 1.

Hence, the “noise variance” in the aggregated model, σ2
ε,∆, actually constitutes a mixture of the

noise and informational variance of the baseline model, with the unit root component associ-

ated with efficient price shocks being the sole determinant of the longer term price variation.

Therefore, at a more aggregate level, εi+∆,∆ does not represent a pure noise innovation, but

also incorporates the cumulative impact of micro-granular feedback stemming from underlying

shifts in the fundamental price.

As observed, these aggregation results provide a theoretical benchmark under the assumption

that there is a unique ”baseline frequency” for which the stipulated model, defined through
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equations (1) – (2), applies uniformly across all stocks and at all times. In turn, this simple

dynamic at very high frequencies then triggers the low-frequency dynamics outlined in the

theorem. The predicted positive association between λ and ∆ is readily observed in Figure 12,

suggesting that the basic mechanism of the model is at work for the highest frequencies and thus

imbues the noise variance σ2
ε with the cumulative effect of innovations to the efficient price.

Figure 12: Average estimates for stocks in Group 1 and Group 2-5 of α, λ, σ2
ε∗ , σ2

ε and Cor(ri, ri−1) for
different sampling frequencies ∆ and T = 10 minutes. The underlying realized returns are filtered to
eliminate excessive outliers, as discussed in the main text and in Table 2.
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For estimates of α, however, the theoretical aggregation results are violated. Although the

α estimates do start increasing for large values of ∆ (not reported), we observe the opposite

tendency for low values of ∆. This is not truly surprising. It is evident that the model parameters

vary over time, for example, due to much higher return variance components in the early hours

of trading. We would expect variation across stocks as well. In fact, we already noted that

stocks in Group 1 behave systematically different from the remainder. We also anticipate the

flow of fundamental information to fluctuate across days, rendering factors such as trading

activity, information acquisition, order book depth and bid-ask spreads variable as well. Hence,

it is impossible for any single baseline frequency to provide valid inference for all stock-time

pairings. We further note from Figure 11 that the strength of the feedback is especially strong for

low ∆’s, suggesting that high-frequency trading algorithms might dominate at these frequencies.

This points towards heterogeneous groups of traders, strategies, or algorithms, operating at

different frequencies and inducing feedback effects over intervals of different lengths. That is,

the observed relationship between α and ∆ may be driven by an overlay of distinct pricing error

35



corrections, each playing out at a different pace. In addition, Table 2 reveals the presence of a

substantial number of outliers towards the left tail of the distribution of estimated α’s at the five

second frequency, implying a lack of robustness in the mean estimates. Thus, it is evident that

we should not expect our simple local approximation to deliver clean aggregation results.

These features also manifest themselves in the bottom row of Figure 12. The increasing

return autocorrelation across frequencies is consistent with the drop in α for the longer sampling

intervals, as it implies enhanced temporal smoothing of the underlying return fluctuations.

The (annualized) variance estimates are almost flat, but mildly upward sloping. For the noise

variance, this is expected as the efficient price innovations slowly build into this component.

For the fundamental variance, this is likely due to heterogeneity in the baseline frequency

of the model, as the extent of some of these fundamental shocks only become identifiable at

lower frequencies. Yet, the relative stability in these (annualized) variance parameters suggests

that qualitative interpretation of the results remain meaningful despite the evidence of some

misspecification.

7 A Model Generalization

A useful generalization of the model (1)-(2) is obtained by relaxing the uncorrelatedness of εi
and ε∗i . In fact, by assuming E[εiε

∗
i ] = γ, we enable the model to nest important special cases.

In particular, if γ = ασ2
ε∗ , the model can be re-written as

pi = pi−1 − α(pi−1 − p∗i ) + ε̃i, (24)

with the zero mean innovation term ε̃i := εi − αε∗i and V[ε̃i] = σ2
ε − α2σ2

ε∗ . Moreover,

one may readily check that the innovation in the efficient price, ε∗i , is uncorrelated with the

innovation term in the observed mid-quote price, i.e., E[ε̃iε
∗
i ] = 0.

Consequently, the price dynamics in equation (24) mimics the one in equation (1), except

that the partial price adjustment is based on the discrepancy between the lagged observed price

and concurrent efficient price. Economically, this updating mechanism is motivated by the idea

that traders update their notion of the efficient price instantaneously and modify their quotes (or

transaction prices) accordingly. This representation of the information feedback mechanism

has been proposed by Amihud and Mendelson (1987), where it was applied for daily returns.

In that context, updating based on the current efficient price is plausible compared to one-day

old information. However, in the high-frequency environment, featuring incessant revisions to

the order book, near continuous news feeds, and multiple trades per second, it is less plausible

that traders have the capability to gauge the efficient price every instant. Instead, we assume

36



Figure 13: Figure depicts some of the estimation results of the generalized model for the first two trading
days of 2014 for AAPL (first panel), AMZN (second panel), and MSFT (third panel) The left figure
corresponds to the first trading day; the second figure corresponds to the second trading day. Results are
shown for T = 10 minutes and ∆ = 10 seconds. We report the estimates of the noise variance and the
efficient noise variance (σ2

ε and σ2
ε∗) and the estimate of λ = E(εiε

∗
i ). γ = 0 corresponds to our initial

model, while γ = ασ2
ε∗ corresponds to partial adjustment according to Amihud and Mendelson (1987).
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that updates regarding the fundamental price occur with a slight, and potentially time-varying,

delay. In other words, we hypothesize that our base model (γ = 0) is more suitable at high

frequencies (small ∆), while model (24) is more plausible for large ∆. A major advantage of

our generalized model is that both updating mechanisms can be tested straightforwardly via

simple restrictions on γ.
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Another special case of great interest arises for γ = σ2
ε∗ , corresponding to α = 1 in the

parameterization above. This leads to the ”classical” random-walk-plus-iid-noise model, see,

e.g., Ait-Sahalia et al. (2005) and Bandi and Russell (2008)),

pi = p∗i + εi

with E[εiε
∗
i ] = 0. As discussed in Section 2, this formulation does not capture the endogeneity

of the noise which, in our specification, arises naturally from temporal back-shifts stemming

from the presence of the lagged pricing error in the adjustment mechanism.

The generalized model is readily estimated from the approach outlined in Section 5. How-

ever, it is necessary to modify the covariance matrix of wi = (εµi , 0, εi) as follows,

Σw =


σ2
ε + σ2

ε∗ − 2ασ2
ε∗ 0 σ2

ε − ασ2
ε∗

0 0 0

σ2
ε − ασ2

ε∗ 0 σ2
ε

 .

Figure 13 displays the time series of estimates for γ, the quantity ασ2
ε∗ as well as σ2

ε

and σ2
ε∗ for the first two trading days of 2014 for Apple, Amazon, and Microsoft using ten-

minute estimation windows and sampling every ten seconds. These illustrations are generally

representative of the features observed over other trading days and stocks. It is evident that

the estimates of γ vary around zero. In contrast, the restriction imposed by the Amihud and

Mendelson (1987) model, namely the equality of γ and ασ2
ε∗ is strongly violated due to erratic

fluctuations in the latter series. This suggest that our base model, assuming γ = 0, and thus

an error correction mechanism working through the lagged pricing errors, is more in line with

the high-frequency evidence than the specification adopted in Amihud and Mendelson (1987).

Clearly, the identical verdict carries over to the random-walk-plus-iid-noise model, which further

requires γ = σ2
ε∗ , or α = 1 within the Amihud and Mendelson (1987) representation. Again,

the σ2
ε∗ estimate fluctuates much too widely compared to the estimate for γ.

To generate a more formal statistical test of these restrictions, we estimate the generalized

model with an unconstrained value for E[εiε
∗
i ] = γ, and then again with respectively the

Amihud and Mendelson (1987) constraint, γ = ασ2
ε∗ , and the constraint of our base model,

γ = 0, imposed. Next, we perform likelihood ratio tests on all available local intervals. Figure

14 depicts the cross-sectional (across local windows and stocks) distribution of the resulting

likelihood ratio statistics, ΛLR = 2(lnLU − lnLR), where lnLU denotes the log-likelihood

value of the generalized (unrestricted) model and lnLR denotes the log likelihood value under

the restriction γ = ασ2
ε∗ in the upper panel and the restriction γ = 0 in the lower panel.

Consistent with the suggestive evidence from Figure 13, we find that the proportion of rejections
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Figure 14: Figure shows the likelihood ratio statistics for the hypothesis H0 : γ = ασ2
ε∗ (left panel) and

H0 : γ = 0 (right panel) based on estimates for all stocks and all local windows for T = 10min and
∆ = 2 seconds (top), ∆ = 5 seconds (middle) and ∆ = 10 seconds (bottom).
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for the Amihud and Mendelson (1987) model is much higher than our base model. Moreover, the

rejection frequencies for our base line model is largely independent of ∆, while the likelihood

ratio statistics decline markedly for larger values of ∆ in the case of the Amihud and Mendelson

(1987) model. These findings are consistent with our conjecture that an updating mechanism

based on (pi−1 − p∗i ) is inappropriate for high sampling frequencies, but becomes more tenable

as ∆ increases. Nonetheless, we also acknowledge that the drop in the rejection rate likely also,

in part, is associated with a general loss in power arising from less precise inference at the lower

sampling frequencies.

Table 3 complements the evidence by reporting the average and median values of ΛLR

and corresponding rejection frequencies at the 5% significance level. For ∆ = 2 seconds,

the Amihud and Mendelson (1987) model is rejected in over 96% of the available intervals,

while the base model with γ = 0 is rejected in only 27% of all cases. These numbers decline
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Table 3: The table reports summarizes the results for the likelihood-ratio test statistics ΛLR = 2(lnLU −
lnLR) for the hypothesis H0 : γ = ασ2

ε∗ and H0 : γ = 0 based on estimates for all 100 NASDAQ
index constituents over the first 40 trading days in 2014, using 39 10-minute estimation windows per
day (sample size N = 152, 000). The table reports the mean and median of ΛLR and the percentage of
rejections at the 5-% level for ∆ = 2sec, ∆ = 5sec and ∆ = 10sec.

H0 : γ = ασ2
ε∗ H0 : γ = 0

∆
Mean
ΛLR

Median
ΛLR

reject
(in %)

Mean
ΛLR

Median
ΛLR

reject
(in %)

2 19.412 25.127 96.5 1.249 3.494 27.0
5 5.656 8.686 62.3 1.122 2.563 23.0
10 3.744 4.991 49.0 1.162 2.108 18.2

to 49% and 18%, respectively, for ∆ = 10 seconds. Finally, we reiterate that our decisive

rejection of the Amihud and Mendelson (1987) restriction, γ = ασ2
ε∗ , also implies rejection

of the random-walk-plus-iid-noise model, as it constitutes a special case of the former. The

fact that the hypothesis γ = 0 provides a superior approximation to the data suggests that the

endogeneity of the market microstructure noise primarily stems from temporal feedback effects.

8 Conclusions

This paper provides a novel perspective on ”classical” martingale-plus-noise models for high-

frequency mid-quote prices, as commonly used in the literature. The proposed modification

of this model class by just one additional parameter is simple but powerful, as it yields a

more structural perspective and opens up canonical links to existing approaches in market

microstructure theory. We show that well-known properties of market microstructure noise,

such as serial correlation as well as correlation with the efficient price (’endogeneity’), arise

naturally from temporal feedback due to noise-induced mispricing.

We identify error correction due to prevailing mispricing as a key source of high-frequency

dynamics in financial returns. The interplay of the speed of price adjustment and the noise-

to-signal ratio governs the autocovariance structure of intraday returns and is shown to have a

profound effect on realized volatilities sampled on high frequencies.

Serial correlation in high-frequency returns may therefore be rationalized by the extent of

sluggishness in prices and the relative noisiness (or informativeness) of the price innovations.

Our empirical analysis shows that the interplay between these two key parameters varies

over time and triggers local intervals of ’momentum’ behavior (positive autocorrelations)

and ’contrarian’ trading (negative autocorrelations). An important empirical finding is that

particularly regimes of statistically significant positive serial correlations in high-frequency
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mid-quote returns (inducing downward sloped realized volatility signature plots) occur more

often than commonly expected.

We moreover show that feedback effects based on lagged efficient prices are clearly more in

line with the high-frequency return dynamics than updating based on current efficient prices, as

proposed by Amihud and Mendelson (1987) for daily returns. We show that the latter updating

mechanism is more appropriate for higher aggregation levels but is soundly rejected at high

frequencies. An immediate consequence is that the ”classical” martingale-plus-iid-noise model

is clearly rejected as well. We conclude that temporal feedback, as captured by the model

developed in this paper, may be a critical determinant for the dynamics of high-frequency

returns.

The proposed framework allows us to establish closer linkages between high-frequency

based volatility estimation and market microstructure analysis and it may be expanded in various

directions. From a statistical viewpoint, interesting extensions include a relaxation of the locally

constant parameterization or an introduction of more general updating mechanisms, opening

up possibilities for the construction of more efficient volatility estimators in a generalized

framework.

Finally, our analysis identifies the speed of pricing error correction, or the sluggishness

of the price adjustment, as a key parameter driving high-frequency return dynamics and as

a natural measure for informational efficiency in the market. Interesting avenues for future

research therefore include the cross-sectional variation in this sluggishness parameter and its

links to liquidity characteristics of the assets.
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Appendix

Proofs

For general reading, the next lemma can be skipped and only serves as a technical support for

the results in the next sections.

Lemma A. The cross-moments of εi and µi obey

(i) E[µi−hεi] = 0 ∀h > 0,

(ii) E[µi+hεi] = (1− α)hσ2
ε ∀h ≥ 0.

Proof. Observe that because of equation (3), we have µi+1 = −αµi + εµi+1. Hence, through

backward recursion, we obtain the moving average representation for µi+h and µi, i.e.,

µi+h = (1− α)h+1µi−1 +

h∑
j=0

(1− α)jεµi+h−j , (25)

µi = (1− α)iµ0 +

i∑
j=0

(1− α)jεµi−j . (26)

Further, note that the innovation to the mispricing term is defined as εµi = εi − ε∗i and that εi
and ε∗i are mutually independent, i.i.d. random noise processes. Therefore,

E[εiε
µ
k ] = δ(i− k)σ2

ε , (27)
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where δ denotes the Dirac-Delta function. The lemma now follows from straightforward

calculations.

(i) Using equation (26), we have for i > 0 and h > 0

E[µi−hεi] = (1− α)i−h E[εµ0εi]︸ ︷︷ ︸
=0

+
i−h∑
j=0

(1− α)jE[εµi−h−jεi]. (28)

The last terms vanishes because of equation (27), as i− h− j ≤ i− h < i.

(ii) From equation (25), we obtain

E[µi+hεi] = (1− α)h+1 E[µi−1εi]︸ ︷︷ ︸
=0

+
h∑
j=0

(1− α)jE[εiε
µ
i+h−j ]. (29)

The first term is zero because of property (i). For the second term, equation (27) implies,

h∑
j=0

(1− α)jE[εiε
µ
i+h−j ] = (1− α)hσ2

ε . (30)

Proof of Lemma 1. We have, by definition,

Cov(ri+h, ri) = E[(ri+h−E[ri+h]︸ ︷︷ ︸
=0

)(ri−E[ri]︸︷︷︸
=0

)] = E[ri+hri] = E[(pi+h−pi+h−1)(pi−pi−1)].

(31)

Now, using, pi = µi + p∗i , we obtain,

Cov(ri+h, ri) = E[(µi+h − µi+h−1 + p∗i+h − p∗i+h−1)(µi − µi−1 + p∗i − p∗i−1)]. (32)

Then exploit equation (3) to establish,

Cov(ri+h, ri) = E
[(
−αµi+h−1 + εµi+h + ε∗i+h︸ ︷︷ ︸

=εi+h

)(
−αµi−1 + εµi + ε∗i︸ ︷︷ ︸

=εi

)]

= E
[(
−αµi+h−1 + εi+h

)(
−αµi−1 + εi

)]
= α2 E[µi+h−1µi−1]− αE[µi+h−1εi]− αE[εi+hµi−1]︸ ︷︷ ︸

=0

+E[εi+hεi]︸ ︷︷ ︸
=0

,

(33)
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where we exploited Lemma A, and the fact that εi is i.i.d.

It follows that,

Cov(ri+h, ri) = α2 E[µi+h−1µi−1]− αE[µi+h−1εi]︸ ︷︷ ︸
=(1−α)h−1σ2

ε

. (34)

The first term is given in equation (25). The two terms may then be evaluated using equation (5)

and Lemma A to yield,

Cov(ri+h, ri) = (σ2
ε∗ + σ2

ε)α
2 (1− α)h

1− (1− α)2
− α(1− α)h−1(σ2

ε∗ + σ2
ε) + α(1− α)h−1σ2

ε∗

= α(1− α)h−1σ2
ε∗︸ ︷︷ ︸

=ψ(h−1) · (2−α)

(1 + λ)

((
α− α2

1− (1− α)2
− 1− (1− α)2

1− (1− α)2

)
︸ ︷︷ ︸

=− 1
2−α

+
1

1 + λ

)

= ψ(h− 1)

(
(1− α)− λ

)
.

(35)

Proof of Theorem 1. Using the identity pi = µi + p∗i from equation (3), to substitute for pi
below, we obtain,

〈p〉∆T = E

T/∆−1∑
j=0

(r∆
j∆)2

 = E

T/∆−1∑
j=0

(pj∆+∆ − pj∆)2

 .
= E

[T/∆−1∑
j=0

(µj∆+∆ − µj∆ + p∗j∆+∆ − p∗j∆)2

]
.

Now, exploiting the recursive structure of µi via the identity µj∆+∆ = (1 − α)∆µj∆ +∑∆−1
k=0 (1 − α)kεµj∆+∆−k, along with equation (3) and p∗j∆+∆ − p∗j∆ =

∑∆
k=1 ε

∗
j∆+k, we

rewrite this equation as,

〈p〉∆T =

T/∆−1∑
j=0

E
[
(Ãj + B̃j + C̃j)

2

]

=

T/∆−1∑
j=0

{
E[Ã2

j ] + E[B̃2
j ] + E[C̃2

j ] + 2E[ÃjB̃j ]︸ ︷︷ ︸
=0

+2E[ÃjC̃j ]︸ ︷︷ ︸
=0

+2E[B̃jC̃j ]

}
,

where the terms satisfy Ãj =
(
(1 − α)∆ − 1

)
µj∆, B̃j =

∑∆−1
k=0 (1 − α)kεµj∆+∆−k and

C̃j =
∑∆

k=1 ε
∗
j∆+k. We then exploit, from Lemma A, that µj∆ is independent of future noise
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terms, implying E[ÃjB̃j ] = 0 and E[ÃjC̃j ] = 0, i.e.,

〈p〉∆T =

T/∆−1∑
j=0

{
E[Ã2

j ] + E[B̃2
j ] + E[C̃2

j ] + 2E[B̃jC̃j ]

}
.

The first three terms can be rewritten, using a couple of definitions and equation (5), E[(εµi )2] =

σ2
µ, E[ε2

i ] = σ2
ε and E[µ2

j∆] = σ2
µ/(α(2− α)). Moreover, since E[ε∗kε

µ
l ] = −σ2

ε∗δkl, the cross-

term satisfies E[B̃jC̃j ] = E[
(∑∆−1

k=0 (1 − α)kεµj∆+∆−k
)(∑∆

k=1 ε
∗
j∆+k

)]
= −σ2

ε∗
∑∆

k=1(1 −

α)k−1, where δkl denotes the Kronecker-symbol, i.e., δkl = 1 if k = l and δkl = 0 otherwise.

Thus, our equation takes the form,

〈p〉∆T =

T/∆−1∑
j=0

{(
(1− α)∆ − 1

)2 σ2
µ

α(2− α)
+

∆−1∑
k=0

(1− α)2k

︸ ︷︷ ︸
=

1−(1−α)2∆

1−(1−α)2

σ2
µ + ∆σ2

ε∗ − 2σ2
ε∗

∆∑
k=1

(1− α)k−1

︸ ︷︷ ︸
=

1−(1−α)∆

α

}

= T σ2
ε∗ +

T

∆

{(
(1− α)∆ − 1

)2 σ2
µ

α(2− α)
+

1− (1− α)2∆

1− (1− α)2
σ2
µ − 2σ2

ε∗
1− (1− α)∆

α

}
= T σ2

ε∗ + T

{
2σ2

µ

1− (1− α)∆

α(2− α)∆
− 2σ2

ε∗
1− (1− α)∆

α∆

}
= T σ2

ε∗ + T
2(1− (1− α)∆)

α∆︸ ︷︷ ︸
=φ(∆)

(
σ2
µ − σ2

ε∗(2− α)
)

(2− α)

= T σ2
ε∗ + Tφ(∆)

{
σ2
ε + σ2

ε∗ − σ2
ε∗(2− α)

}
.

Now, substitute the noise-to-signal ratio λ = σ2
ε/σ

2
ε∗ into the equation,

〈p〉∆T = T σ2
ε∗ + Tσ2

ε∗ · φ(∆) ·
{
λ− (1− α)

}
.

Proof of Theorem 2. The observed price at time i+ ∆ satisfies,

pi+∆ = pi+∆−1 − α(µi+∆−1) + εi+∆, (36)

with µi+∆−1 = pi+∆−1 − p∗i+∆−1. Then, by recursion we obtain,

pi+∆ = pi − α
∆−1∑
j=0

µi+j +

∆∑
j=1

εi+j . (37)
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Now, we use the AR recursion property of µi, i.e., µi+j = (1− α)jµi +
∑j−1

k=0(1− α)kεµi+j−k

and substitute it into (37) to obtain,

pi+∆ = pi − α
∆−1∑
j=0

(1− α)j︸ ︷︷ ︸
:=α∆

· µi︸︷︷︸
=pi−p∗i

−α
∆−1∑
j=0

j−1∑
k=0

(1− α)kεµi+j−k +

∆∑
j=1

εi+j︸ ︷︷ ︸
:=εi+∆,∆

= pi − α∆(pi − p∗i ) + εi+∆,∆.

(38)

This gives the observed price dynamics of the aggregated model, sampled on step sizes ∆. It is

formally equivalent with our initial model, where,

α∆ = α

∆−1∑
j=0

(1− α)j = 1− (1− α)∆. (39)

The error terms εi+∆,∆ are i.i.d. normally distributed error terms with zero mean. Independence

originates from the fact that εi+∆,∆ is based on non-overlapping partial sums of εi and ε∗i , thus

preserving independence. The distribution properties derive directly from the corresponding

properties of the primal noise terms εi and ε∗i .

To compute σ2
ε,∆ := Var(εi+∆,∆), we re-write εi+∆,∆ as,

εi+∆,∆ = −α
∆−1∑
j=1

j−1∑
k=0

(1− α)k︸ ︷︷ ︸
= 1
α

(1−(1−α)j)

εµi+∆−j +
∆∑
j=1

εi+j

= −
∆−1∑
j=1

{
1− (1− α)j

}
εµi+∆−j +

∆∑
j=1

εi+j

= −
∆−1∑
j=0

{
1− (1− α)j

}
(εi+∆−j − ε∗i+∆−j) +

∆−1∑
j=0

εi+∆−j

=
∆−1∑
j=0

{
(1− α)j

}
εi+∆−j +

∆−1∑
j=0

{
1− (1− α)j

}
ε∗i+∆−j .

(40)

Thus, exploiting the i.i.d. property of the primal noise terms, we obtain the aggregated noise

variance as,

σ2
ε,∆ = σ2

ε

∆−1∑
j=0

(1− α)2j

︸ ︷︷ ︸
=gε

+σ2
ε∗

∆−1∑
j=0

(1− (1− α)j)2

︸ ︷︷ ︸
=gε∗

= gεσ
2
ε + gε∗σ

2
ε∗ ,

(41)

47



with

gε =
1

α(α− 2)

{
(1− α)2∆ − 1

}
, (42)

gε∗ = ∆ +
1

α(α− 2)

{
3− 2α− 2(1− α)∆+1 + (1− α)2∆

}
. (43)

The aggregated efficient variance σ2
ε∗,∆ := Var(ε∗i+∆,∆) is σ2

ε∗,∆ = Var(
∑∆

j=1 ε
∗
i+j) = ∆σ2

ε∗ .

Tables and Figures

Figure 15: Empirical distribution of parameter estimates for the different quote-revision groups for
∆ = 2sec. Results are based on ∆ = 2sec and varying intra-day estimation period T . The left column
represents T = 5min, the middle column represents T = 10min and the right column represents
T = 30min.
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Figure 16: Empirical distribution of parameter estimates for the different quote-revision groups for
∆ = 5sec. Results are based on ∆ = 5sec and varying intra-day estimation period T . The left column
represents T = 5min, the middle column represents T = 10min and the right column represents
T = 30min.
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Figure 17: Empirical distribution of parameter estimates for the different quote-revision groups for
∆ = 10sec. Results are based on ∆ = 10sec and varying intra-day estimation period T . The left column
represents T = 5min, the middle column represents T = 10min and the right column represents
T = 30min.

0.6 0.7 0.8 0.9 1.0 1.1

0
1

2
3

4
5

α

Group 1
Group 2
Group 3
Group 4
Group 5
All

0.6 0.7 0.8 0.9 1.0 1.1

0
1

2
3

4
5

α

Group 1
Group 2
Group 3
Group 4
Group 5
All

0.6 0.7 0.8 0.9 1.0 1.1

0
1

2
3

4
5

α

Group 1
Group 2
Group 3
Group 4
Group 5
All

0.04 0.06 0.08 0.10 0.12 0.14

0
5

10
20

30

λ

Group 1
Group 2
Group 3
Group 4
Group 5
All

0.04 0.06 0.08 0.10 0.12 0.14

0
5

10
20

30

λ

Group 1
Group 2
Group 3
Group 4
Group 5
All

0.04 0.06 0.08 0.10 0.12 0.14

0
5

10
20

30

λ

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

λ − (1−α)

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0.
0

1.
0

2.
0

3.
0

λ − (1−α)

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

λ − (1−α)

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Cor(ri,ri−1)

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Cor(ri,ri−1)

Group 1
Group 2
Group 3
Group 4
Group 5
All

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Cor(ri,ri−1)

Group 1
Group 2
Group 3
Group 4
Group 5
All

50



Table 4: The table shows group-specific averages of stock-specific time averages. The groups are built
based on quintiles on the average number of daily mid-quote updates. We record time averages of the
mid-quote price in dollars (Price), the relative tick size in basis points (Tick, computed as the inverse of
Price), the spread (Spread) in cents, the spread in basis points, the depth on top of the book (Depth) in
shares, and the daily trade volume (TrV ol) in shares and dollar. The table also provides group-specific
averages of daily mid-quote revisions (Nrv), the average number of daily order messages (Nmsg), and
the average first-order return autocorrelation.

Stock Characteristics
Stock

Activity Corr

Revision
Activity
Groups

Price
(in $)

Tick
(in bps)

Spread
(in cents)

Spread
(in bps)

Depth
(in shares)

TrVol
(in mio.
shares)

TrVol
(in mio
USD)

Nrv
(in 104)

Nmsg
(in 105) ρ

Group 1 26 5.3 1.2 6.5 20357 3 63.4 0.211 2.367 0.001
Group 2 59.2 1.9 3 4.5 988 1 39.8 0.613 1.414 0.027
Group 3 68.4 1.6 3.4 4.4 575 0.8 50.1 0.871 1.477 0.026
Group 4 99.9 1.1 7.8 6.3 385 0.7 56.8 1.118 1.22 0.031
Group 5 280.1 0.8 19.3 6.1 368 1.5 241.2 1.994 1.609 0.03

All 106.7 2.1 7 5.6 4535 1.4 90.3 0.961 1.617 0.023
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